
On Optimal Partitioning For Sparse Matrices In Variable Block Row Format∗

Willow Ahrens† Erik G. Boman‡

Abstract
The Variable Block Row (VBR) format is an influen-
tial blocked sparse matrix format designed for matrices
with shared sparsity structure between adjacent rows and
columns. VBR groups adjacent rows and columns, storing
the resulting blocks that contain nonzeros in a dense for-
mat. This reduces the memory footprint and enables op-
timizations such as register blocking and instruction-level
parallelism. Existing approaches use heuristics to determine
which rows and columns should be grouped together. We
show that finding the optimal grouping of rows and columns
for VBR is NP-hard under several reasonable cost models.
In light of this finding, we propose a 1-dimensional variant
of VBR, called 1D-VBR, which achieves better performance
than VBR by only grouping rows. We describe detailed cost
models for runtime and memory consumption. Then, we de-
scribe a linear time dynamic programming solution for op-
timally grouping the rows for 1D-VBR format. We extend
our algorithm to produce a heuristic VBR partitioner which
alternates between optimally partitioning rows and columns,
assuming the columns or rows to be fixed, respectively. Our
alternating heuristic produces VBR matrices with the small-
est memory footprint of any partitioner we tested.

1 Introduction

Matrices that occur in practice are often sparse, mean-
ing that most of their entries are zero, and it is faster to
process only the nonzero entries[1, 2]. Some applications
produce matrices where nonzeros occur close together.
In these cases, we can reduce the complexity and stor-
age requirements of processing and locating individual
nonzeros by storing the nonzeros in dense blocks. We
need only store the size and location of the block, and
can employ dense performance engineering techniques
like register blocking and instruction-level parallelism.

Blocked formats are most commonly used to ac-
celerate multiplication between a sparse matrix and a

∗This work was supported by a Department of Energy Com-

putational Science Graduate Fellowship, DE-FG02-97ER25308.

This work also funded by the Department of Energy’s Exas-
cale Computing Program (ECP). Sandia National Laboratories

is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administra-

tion under contract DE-NA-0003525. This research used resources
of the National Energy Research Scientific Computing Center

(NERSC), a U.S. Department of Energy Office of Science User
Facility operated under Contract No. DE-AC02-05CH11231.

†Massachusetts Institute of Technology and Sandia National
Laboratories, willow@csail.mit.edu

‡Sandia National Laboratories, egboman@sandia.gov.

dense vector (SpMV). SpMV is often used as a sub-
routine in iterative solvers; the same sparse matrix is
multiplied hundreds of times before a solution is found.
A practical use case is to block the matrix once, then
offset the cost of finding the blocks and converting the
matrix format with the savings obtained after multiply-
ing the matrix many times in an iterative solver.

Dense blocks have also been used in supernodal
sparse factorizations [3, 4], incomplete factorizations
[1, 5] and in sparse triangular solves [6]. Originally,
only rows/columns with identical sparsity patterns were
merged, but the approach can be relaxed to merge
rows/columns with merely similar patterns [7]. Note
that for preconditioning, block methods are mathemati-
cally different and may affect the convergence rate, typ-
ically making methods more robust. Kim et. al. [8]
extended the “algorithms by block” concept from dense
to sparse linear algebra and showed it is useful for task
parallel systems on modern architectures.

One of the first blocked formats to receive consider-
able study was the Variable Block Row (VBR) format,
where similar adjacent rows and columns are grouped
together [9, 10, 11]. VBR is described in the SPARSKIT
library [12, 13], the SparseBLAS specification [14], and
the OSKI Sparse Kernel Interface [15, 2], and is used in-
ternally by the MKL Paradiso solver [16]. Unlike many
formats which use fixed-size blocks, the number of rows
or columns that may be grouped together is allowed
to vary along each dimension, producing variably sized
blocks. Since blocks are produced by merging entire
rows or columns, the blocks are aligned, allowing imple-
mentations to reuse elements of other arguments along
the direction of alignment. In general, producing bigger
blocks means that less location information is needed,
but as blocks get bigger, they may cover and store more
zeros explicitly in dense storage.

While the VBR format was motivated by scientific
applications that produce matrices with perfect block
structure (where nearby rows with identical patterns
might represent different partial derivatives of the same
variable or different variables of the same multiphysics
mesh point), we investigate the application of these
techniques to sparse matrices with imperfect block
structure (where nearby rows with correlated patterns
might represent neighboring mesh points or similar

ar
X

iv
:2

00
5.

12
41

4v
2

 [
cs

.D
S]

 2
5

M
ay

 2
02

1

mathematical programming constraints).
Block partitioning algorithms sometimes reorder

rows to group similar rows together [17, 5, 18]. In
this work, as in the definition of VBR, we consider
only contiguous partitions (splitting without reorder-
ing). While noncontiguous partitions allow for more
expressive blocks, permuting a matrix or vector may be
an expensive memory-intensive procedure. In some sit-
uations, the matrix may have already been reordered for
numerical reasons, and the user might need to operate
on the matrix without changing the row ordering. Fur-
thermore, there are several matrices which do not need
reordering to utilize similarities among adjacent rows.
Our cost models apply to contiguous or noncontiguous
partitions alike, and research into contiguous partition-
ing may inform general partitioning approaches.

Although the contiguous case may appear simpler,
in Appendix A, we prove that determining optimal
groupings of adjacent rows and columns for VBR format
is NP-Hard under two simple cost models by reduction
from the Maximum Cut problem [19, 20]. The prob-
lem is still NP-Hard even when the row and column
partitions are constrained to be the same, a symmet-
ric constraint required by some block factorizations. In
light of this observation, we invent a specialization of
the VBR sparse matrix format for the case where the
columns are simply ungrouped, making optimal parti-
tioning tractable. We refer to this new, simpler, format
as 1D-VBR. 1D-VBR enjoys many of the same bene-
fits as VBR, obtaining better performance at the cost
of slightly more memory usage.

At the time of writing, only heuristic algorithms
have been given to determine which rows or columns
should be grouped together. We first propose detailed
cost models which describe the number of blocks, the
memory footprint, or the expected SpMV runtime of the
resulting VBR or 1D-VBR format, inspired by [21, 10].
We then describe a linear time, single pass, algorithm to
determine the optimal contiguous row groups under a
fixed column grouping and general cost model, inspired
by [22, 23, 24, 25, 26]. Our algorithm is optimal for
1D-VBR since ungrouped columns are a fixed column
grouping. We can also build a VBR heuristic by
alternately partitioning just the rows, then columns,
then rows again, similar to [27, 28, 29]. Our algorithm
runs in time O(R · (umax · m + N) + n), where R is
the rank of the cost function (a small constant), umax

is the maximum block height (a small constant [30]),
and m, n, and N are the number of rows, columns, and
nonzeros, respectively. Our algorithm requires only one
pass directly on the sparse matrix in CSR format.

We test our optimal algorithm against existing
heuristics on a test set of 20 real-valued sparse matrices

with interesting, imperfect, block structure (10 of which
are the test set of [9]), in both 64 and 32 bit precision.
Using our heuristic to reduce the VBR memory foot-
print resulted in the the best compression. Using our
algorithm to minimize our empirical cost model of 1D-
VBR SpMV runtime resulted in the best performance,
achieving a median speedup of 2.22× over the reference
CSR implementation. On at least half of the matrices,
the overhead of partitioning and conversion to 1D-VBR
format was justified within 16.9 multiplications, demon-
strating the practicality of our techniques.

2 Partitioning

Let A be an m × n matrix with N nonzeros, where
Ai,j corresponds to the value in the ith row and jth

column. We use i:i′ to represent the integer sequence
i, i+ 1, ..., i′, and describe submatrices of A as Ai:i′,j:j′ .
When the argument to a function is clear from context,
we will omit the argument for brevity.

In practice, adjacent rows (and columns) often con-
tain similar patterns of nonzero locations. To capitalize
on this observation, we will group similar rows together,
forming a row part. A K-partition Π of rows of A
assigns each row i to one of K parts Πk. In this work,
we insist that our partitions stay contiguous, meaning
that for k < k′, i ∈ Πk, i′ ∈ Πk′ , we have i < i′. We use
Π−1 to refer to the length n vector of part assignments,
so that when i ∈ Πk, Π−1

i = k. When Π is contiguous,
we can represent it with a vector splΠ of K + 1 split
points, so that Πk = splΠ,k : splΠ,k+1 − 1. A partition
is trivial if it assigns each row to a distinct part.

We may also impose an L-partition Φ of columns.
The partitions Π and Φ tile our matrix with K × L
contiguous, non-overlapping, rectangular blocks. The
block (k, l) is of size uk × wl = |Πk| × |Φl|. Blocked
formats store only nonzero blocks, or blocks that
contain at least one nonzero of A. If we partition wisely,
many blocks will be zero and not need to be stored.

We use vi(A,Φ) = {l|A[i,Φl] 6= 0} to refer to the
set of column parts containing nonzeros in the ith row
of A, and γk(A,Π,Φ) =

⋃
i∈Πk

vi to refer to the set of

column parts containing nonzeros in the kth row part of
A.

3 Sparse Formats

Sparse matrices are commonly stored in Compressed
Sparse Row (CSR) format [1], which consists of three
vectors pos, idx, and val. The length m+ 1 vector pos
stores the regions of idx and val corresponding to each
row. The vectors idx and val (each of length N) store
the sorted nonzero column locations and corresponding

values, respectively. Storing A in CSR format uses

(3.1) sCSR(A) = (m+ 1)sindex +N · sindex +N · svalue

bits, where sindex and svalue are the sizes of the index
and value types, in bits.

The Variable Block Row (VBR) format imposes a
contiguous K-partition Π of rows and a contiguous L-
partition Φ of columns [12, 13, 14, 15, 2]. It is illustrated
in Figure 1a. It is convenient to store the length K + 1
and L + 1 split vectors splΠ and splΦ, respectively.
Instead of storing individual nonzero locations, the VBR
format saves memory using the idx vector to store block
indices (the indices record the parts corresponding to
each block). The positions of the variably-sized blocks
in val are not aligned with the positions of the block
indices in the idx array. Therefore, we use a vector
ofs of block locations to encode the starting index of
each block row in val. Assume we were to store A in
VBR format and wanted to determine the value of the
entry Ai,j . Let k = Π−1

i and l = Φ−1
j (when partitions

are contiguous, we can compute this with binary search
on the split vectors). If we cannot find q such that
A.pos[k] ≤ q < A.pos[k + 1] and A.idx[q] = l, then
Ai,j = 0 because the block (k, l) is entirely zero and
is not stored explicitly in VBR format. Otherwise,
our block contains at least one nonzero and starts at
position p = A.ofs[k] +

∑
l′∈γk|l′<l uk ∗ wl′ in the val

array. Because VBR stores nonzero blocks in a dense,
column-major format, Ai,j = A.val[p+ (j −A.splΦ[l]) ·
uk + (i−A.splΠ[k])].

LetNindex(A,Π,Φ) be the number of nonzero blocks
induced by Π and Φ, so that

(3.2) Nindex(A,Π,Φ) =

K∑
k=1

|γk|.

Let Nvalue(A,Π,Φ) be the number of entries contained
in all nonzero blocks induced by Π and Φ, such that

(3.3) Nvalue(A,Π,Φ) =

K∑
k=1

∑
l∈γk

uk · wl.

The VBR format uses six arrays, splΠ, splΦ, pos, ofs,
idx, and val. Storing A in VBR format uses sVBR bits,

(3.4) sVBR(A,Π,Φ) =

(3(K + 1) + (L+ 1) +Nindex)sindex +Nvaluesvalue.

In this work, we introduce a novel specialization
of VBR format where the column partition is trivial,
meaning that the columns are not grouped together and
we concern ourselves only with row partitioning. We call

this special format 1D-VBR. An example is illustrated
in Figure 1b. Because Φ is trivial, we do not need to
store it. Additionally, because blocks have only one
column, block sizes are constant within each row part
and the stride between blocks is constant within each
row part, simplifying the implementation of conversion
and multiplication routines. Assume we were to store
A in 1D-VBR format and wanted to determine the
value of the entry Ai,j . Let k = Π−1[i]. Notice that
Φ−1[j] = j, since Φ is trivial. If we cannot find q such
that A.pos[k] ≤ q < A.pos[k+ 1] and A.idx[q] = j, then
A[i, j] = 0 because the block (k, j) is entirely zero and
is not stored explicitly in 1D-VBR format. Otherwise,
our block contains at least one nonzero and starts at
position p = A.ofs[k] + (q − A.pos[k]) · uk in the val
array. Thus, Ai,j = A.val[p+ (i−A.splΠ[k])]. The 1D-
VBR format uses five arrays, splΠ, pos, idx, ofs, and
val. Storing A in 1D-VBR format uses s1D-VBR bits,

(3.5) s1D-VBR(A,Π) =

(3(K + 1) +Nindex)sindex +Nvaluesvalue.

3.1 Related Sparse Formats Blocked sparse for-
mats have enjoyed a long history of study. In lieu of
providing an exhaustive overview of existing formats, we
refer the reader to works such as [31, 11, 15] which pro-
vide summaries of several sparse blocking techniques.
We focus only on the most relevant formats here. Fig-
ure 1 illustrates some examples of relevant formats.

The BCSR format tiles the matrix with fixed-size
dense format blocks, storing nonzero block locations
in CSR format [32, 33, 34, 35, 36]. BCSR is referred
to as BSR in the Intel® Math Kernel Library [16].
Cost models developed for BCSR depend on the number
of nonzero blocks, leading to the development of row-
wise sampling algorithms to estimate the number of
nonzero blocks [32, 34, 15, 37, 2, 21, 10]. These row-wise
sampling algorithms were improved on by a constant
time nonzero-wise sampling algorithm [38, 39, 40].

Generalizing to less constrained block decomposi-
tions, unaligned block formats continue to use fixed-
size blocks, but relax alignment requirements. The
SPARSKIT implementation of BCSR relaxes the col-
umn alignment of blocks, allowing blocks to shift along
the block rows [13]. One could imagine a format which
groups adjacent blocks in 1D-VBR block rows to achieve
a similar format. The UBCSR format uses a number
of fixed block sizes that can start at any entry in the
matrix [9]. An intriguing approximation algorithm has
been described for the related NP-hard problem of find-
ing good fixed-sized, unaligned, nonoverlapping sparse
matrix block decompositions (the UBCSR format) [41].
The CSR-SIMD format produces dense blocks inside

the rows, putting successive groups of nonzeros into
SIMD-register sized blocks for instruction level paral-
lelism [42]. Note that SpMVs on CSR-SIMD format-
ted matrices cannot reuse loads from the input vector,
whereas 1D-VBR uses only one load from the input for
each block, no matter how large the block is. The 1D-
Variable Block Length (1D-VBL) format, originally pro-
posed in [18] and referred to as 1D-VBL in [11], relaxes
the constraint that the blocks inside rows must be of
fixed length. Both 1D-VBL and CSR-SIMD can reduce
the size of the matrix when nonzeros occur next to each
other in the same row. The Variable Blocked-σ-SIMD
Format (VBSF) is similar to CSR-SIMD, but allows the
blocks to be merged across multiple rows, so the blocks
have a fixed width but variable height. The DynB for-
mat relaxes all alignment and size constraints, allowing
variably sized blocks to start at any entry of the ma-
trix [31]. Algorithms for producing CSR-SIMD, VBSR,
and DynB formats create their blocks with greedy algo-
rithms that add adjacent elements into the block up to a
density-related threshold. Because these formats make
decisions on a block-by-block basis, it makes sense to
convert the matrix to blocked format at the same time
as the block decomposition is determined [42, 31].

4 Blocked SpMV

Algorithm 4.1 shows an example SpMV kernel for a
matrix stored in VBR format. Processing each stored
element of A requires a load from A.val, but we only
need to load from A.idx and x once for each block and
column in the block row, respectively. This data reuse is
a benefit of producing aligned blocks, and a key property
enjoyed by VBR and 1D-VBR but not by CSR-SIMD.
Of course, computations and sequential loads are now
processed with vector instructions. If our vector size
does not divide our block size, we simply pad our vectors
as they are loaded from memory, without needing to pad
the stored blocks. For example, if our blocks are of size
3, we can process them using vectors of size 4, letting
the fourth entry of our y vector register be undefined.
While this does not affect the number of blocks or the
memory usage, it does have an effect on the empirical
runtime.

Algorithm 4.1. Given m×n matrix A in VBR format
and a length n vector x, add A ·x to the length m vector
y, in-place.

1: function SpMV-VBR(y, A, x)
2: p← 1
3: for k ← 1 to K do
4: yy ← y[A.splΠ[k] : A.splΠ[k + 1]− 1]
5: u← A.splΠ[k + 1]−A.splΠ[k]
6: for q ← A.pos[k] to A.pos[k + 1]− 1 do
7: l← A.idx[q]



x x x 0 x
x x x x x x
x 0 0 0 x 0
x x x x x 0

x x
x x

0 x 0 x x x x
x x 0 x x x x


(a) The stored entries of A
in VBR format. Here, Π =
[1:1, 2:4, 5:6, 7:8] and Φ =
[1:2, 3:3, 4:6, 7:7, 8:8, 9:9].



x x x x
x x x x x x
x 0 0 0 x 0
x x x x x 0

x x
x x

0 x x x x x
x x x x x x


(b) The stored entries of A
in 1D-VBR format. Here,
Π = [1:1, 2:4, 5:6, 7:8].



x x x x
x x x x x x
x x
x x x x x

x x
x x

x x x x x
x x x x x x


(c) The stored entries of A
in 1D-VBL format.



x x x 0 x 0 0 0
x x 0 x x x 0 x
x 0 0 0 x 0 0 0
x x 0 x x x 0 0

x 0 0 0 x 0 0 0
x 0 0 0 x 0 0 0

x 0 0 x x x 0 x
x x 0 0 x x x 0 x 0 0 0


(d) The stored entries of A
in CSR-SIMD format.



0 0 x x x 0 0 0 x
x x 0 x x x 0 x 0
x 0 0 0 0 x
x x 0 x x x
0 0 x 0 x 0
0 0 x 0 x 0
0 x 0 0 x x x 0 x
x x 0 0 x x x 0 x


(e) The stored entries of A
in BCSR format. The block
size is 2× 3.



x x x 0 0 x
x x x x x x 0
x 0 0 0 x
x x x x x

x x
x x

0 x x x x 0 x
x x x x x 0 x


(f) The stored entries of A
in UBCSR format.

Figure 1: Various blocked sparse representations of
a sample matrix A. Here, x represents a nonzero,
0 represents an explicitly stored zero, and each box
represents a distinct stored block. Implicit zeros are left
blank. Most formats store nonzero blocks in row-major
order analogous to how CSR stores nonzero entries.

8: for j ← A.splΦ[l] to A.splΦ[l + 1]− 1 do
9: yy ← yy +A.val[p : p+ u− 1] · x[j]

10: p← p+ u
11: end for
12: end for
13: y[A.splΠ[k] : A.splΠ[k + 1]− 1]← yy
14: end for
15: end function

To modify SpMV-VBR for 1D-VBR, we need only
replace the loop on line 6 with the simpler inner loop:

1: for q ← A.pos[k] to A.pos[k + 1]− 1 do
2: j ← A.idx[q]
3: yy ← yy +A.val[p : p+ u− 1] · x[j]
4: p← p+ u
5: end for

We have designed our implementation of Algorithm
4.1 so that we can optimize the code to use a computed
jump instruction to select between dedicated unrolled
loop bodies for each block size u and w. This allows
us to pad the vertical (SIMD) dimension to the nearest
vector width and unroll the horizontal dimension with
minimal overhead. Note that in the 1D-VBR algorithm,
this jump occurs once per row block, since all blocks in
the row block have the same height.

5 Partitioning Problem Statement

Because the blocks in a VBR format are stored in a
dense format, we must trade off between a partition that
uses larger blocks (and stores more explicit zeros) and
a partition that uses smaller blocks (and stores more
block locations). Practitioners often use cost models to
measure the effect of performance parameters like block
sizes. Several diverse cost models have been proposed
for blocked sparse matrix formats [34, 15, 43]. While
many of these models apply to VBR SpMV [10], we are
not aware of any work which takes the next step to use
the cost model to optimize a VBR partition.

To simplify the presentation of our algorithms, we
keep our three cost models simple. Our first model is
simply the number of blocks, (3.2). This model should
perform well on matrices which fit in fast memory, when
the cost of computing a block is only weakly dependent
on its size. The second model assumes that runtime will
be directly proportional to the memory footprint (3.4)
or (3.5). Because SpMV is a memory-bound kernel [44]
and many sparse matrices do not fit in fast memory, we
expect this model to work well for large matrices.

Our third, more general, cost model is inspired
by [10, (2)] and [21, (3)], which both model the time
taken to compute a row part k of height uk as an
affine function in the number of elements in the part.
Cost models with similar forms have been proposed for
similar blocked formats [32, 33, 34, 15].

(5.6) tV BR(A,Π,Φ) =

K∑
k=1

αrow,uk
+

L∑
l=1

αcol,wl
+

K∑
k=1

∑
l∈γk

βuk,wl
.

The vectors α represent the costs associated with
row or column parts, such as loading elements from x,
y, or A.Π, etc. The coefficient matrix β represents
the cost of each block. The runtime for each block
size is represented individually because the relationship
between block size and performance is architecturally
dependent and not easily characterized, especially since
we pad the block to the next available vector size. In
practice, however, β is well approximated by a low rank
matrix. Equation (5.6) applies to 1D-VBR, but is much
simplified since Φ is trivial, so wl = 1 and β becomes a
vector.

We parameterize (5.6) with empirical measure-
ments. For each block size, we measure the time to
multiply the smallest square matrix with an average of
8 blocks per block row such that the problem exceeds
the L2 cache size. We then benchmark the same prob-
lem with twice the blocks, or twice the rows, or twice
the columns. Finally, we use a least-squares fit (normal-
ized to minimize relative error of each datapoint), and
then approximate β with a singular value decomposition
of rank 3, which we found kept the relative error within
2%. Measurement noise sometimes led the cost function
to incentivize larger blocks; we encourage monotonicity
by using the prefix maximum of the measured cost. Tak-
ing these empirical measurements takes a few hours, but
only needs to be performed once per architecture. Be-
cause our empirical cost model uses real measurements,
it can account for factors like memory bandwidth or
padding to fit in SIMD registers, or potentially unantic-
ipated decisions that other implementers may make.

Our main problem can be stated as follows:

Definition 5.1. (Block Partitioning) Given an
m × n matrix A and block size limit umax × wmax,
find the contiguous K-partition Π and L-partition Φ
minimizing a cost function of the form

K∑
k=1

αrow,uk
+

L∑
w=1

αcol,wl
+

K∑
k=1

∑
l∈γk

R∑
r=1

βrow,uk,r∗βcol,wl,r,

where R is the rank of the block cost matrix.

All previously described cost functions (3.2), (3.5),
(3.4), and (5.6) are expressible in the above form. The
block count is rank 1, and the memory usage is rank 2.

We show in Appendix A that Problem 5.1 is NP-
Hard for both the very simple cost model

(5.7) f(A,Π,Φ) = s ·Nindex +Nvalue,

where s ≥ 1 is small constant and umax ≥ 2, and for

(5.8) f(A,Π,Φ) = Nindex.

These cost models approximately minimize the memory
usage (3.5) or (3.4), or simply the number of blocks
(3.2), and are special cases of the fully generic form of
Definition 5.1. A corollary will show the problem is still
NP-hard even when the row and column partitions are
constrained to be the same, the symmetric case. Our
proof reduces from the Maximum Cut problem [19, 20].
We represent vertices of the graph with block rows in a
matrix, and edges as block columns, inserting gadgets
at the endpoints of each edge. Then we show that we
can construct a maximum cut from the optimal VBR
blocking for the gadgets.

5.1 1D Partitioning and Alternation The re-
mainder of the paper will be focused on situations where
Φ is considered fixed. We will propose an optimal,
linear-time algorithm for this restricted problem. Be-
cause we can convert any row partitioning algorithm to
a column partitioning algorithm by simply transposing
our matrix first [45], without loss of generality we con-
sider only the row partitioning case.

In the case of 1D-VBR, Φ is fixed to be the trivial
partition, and our restricted solution can optimize our
cost models exactly.

The restricted solution also gives rise to an alter-
nating heuristic for the original VBR problem where we
iteratively partition the rows first, then partition the
columns under the new row partition, and so on. In each
iteration, the previously fixed partition provides an up-
per bound on the optimal value, so the objective always
decreases and the process eventually converges. In the
symmetric case, when the column and row partitions
must be the same, we could set the column partition
equal to the row partition after each iteration, but could
no longer make similar guarantees on convergence. Al-
ternating heuristics have been applied to problems like
graph partitioning and load balancing [27, 28, 29]. Ex-
isting VBR heuristics partition rows and columns sepa-
rately from each other, without incorporating informa-
tion from one when partitioning the other.

6 Heuristics

Existing VBR implementations use heuristics instead of
directly optimizing partitions to minimize cost models.
The heuristics used for rows are ignorant of column
partitions and vice versa.

The VBR implementation in SPARSKIT uses a
heuristic we refer to as the StrictPartitioner, that
groups identical rows and columns [12, 13]. One can
easily determine that two consecutive rows have iden-

tical sparsity patterns by coiterating over their pat-
terns. This straightforward heuristic can be quite effec-
tive when the block structure is obvious, which is some-
times the case for FEM matrices or supernodal struc-
tures in direct factorizations. The StrictPartitioner
reads each nonzero at most twice, and the reads are se-
quential. Producing the VBR or 1D-VBR matrix from
the computed partition is also easier with the added
assumption that sparsity patterns are identical within
blocks, since we can easily compute the block sparsity
pattern from the nonzero sparsity pattern.

The VBR implementations of OSKI and MKL
PARADISO relax the StrictPartitioner in favor of
the OverlapPartitioner, a heuristic which groups
rows that satisfy some similarity requirement [2, 16].
The rows are initially ungrouped, and each row i′ is
processed in turn from top to bottom. Let i be the first
row in the group immediately preceding i′. The overlap
heuristic adds i′ to i’s group if the height would not
exceed umax and

|vi ∩ vi′ |
min(|vi|, |v′i|)

≥ ρ,

otherwise, we start a new group with row i′. This pro-
cess is repeated for the columns, producing Π and Φ.
The above similarity metric is known as the overlap
similarity, although the cosine similarity is also some-
times used for greedy noncontiguous partitioning [5].

The OSKI code base uses a binary vector h of length
n as a perfect hash table to calculate the size of the
intersection, first setting hj to true for each j ∈ vi,
then iterating over elements of vi′ , checking to see if
corresponding locations in h have been set to true.
When we start a new group, we must iterate through
vi again to reinitialize h to false. Because h will be
used at most m times, if we instead change h to be a
integer vector and store the value i at each location of
h when calculating intersections with vi, we need only
iterate over vi once. Since we will build on this concept
when introducing our optimal algorithm, we relegate
the pseudocode for our improved implementation of the
overlap heuristic to Appendix B.

7 Optimal Algorithm

Recall that our restricted Problem 5.1 asks us to com-
pute an optimal row partition under some fixed column
partition Φ. In situations where the runtime of the par-
titioner is justified with respect to the runtime savings
of the target kernel, efficient algorithms that operate di-
rectly on the input matrix are desirable. Thus, we seek a
linear time algorithm that can partition the matrix with
only one pass over the nonzeros. Our problem has op-
timal substructure, and we use dynamic programming

on the rows of the matrix A. Given that the optimal
partition of rows i′ through m has cost ci′ , then the
cost of the optimal partition of rows i through m can
be computed as

max
1≤u≤umax

αrow,u +

R∑
r=1

∑
l∈γ′

βrow,u,r ∗ βcol,wl,r + ci′ ,

where i′ = i+u and γ′ = vi∪ ...∪vi′−1. We record each
of the R partial sums

∑
l∈γ′ βcol,wl,r in the variables dr.

We use a vector h to remember the most recent row in
which we saw each nonzero column part, which allows
us to efficiently update the vectors ∆r, the changes in
dr as we increment i′. We can later multiply each dr
by βrow,u,r and sum to produce the total cost of each
candidate row part, in turn. Each best block size is
recorded in a vector splΠ, and once the vector is full, we
follow these pointers to construct a partition in-place,
completing our algorithm. Since Φ is fixed, we can safely
ignore αcol.

Our approach is shown in Algorithm 7.1. Recall
that CSR format provides convenient iteration over vi
in sorted order.

Algorithm 7.1. Given an m × n sparse matrix A, a
column partition Φ, a maximum block height umax,
compute a row partition Π minimizing the cost function

K∑
k=1

αrow,uk
+

L∑
l=1

αcol,wl
+

K∑
k=1

R∑
r=1

∑
l∈γk

βrow,uk,r ∗βcol,wl,r,

1: function OptimalPartitioner(A, Φ, α, β)
2: Allocate length-(m+ 1) vectors c, splΠ, ∆1, ...,∆R

3: c[m+ 1],∆1, ...,∆R ← 0
4: Allocate length-L vector h initialized to m+ 1
5: Compute Φ−1

6: for i← m to 1 do . Iterating Backwards!
7: for l ∈ vi do
8: w ← |Φ[l]|
9: for r ← 1 to R do

10: ∆r[i]← ∆r[i] + βcol,w,r

11: ∆r[h[l]]← ∆r[h[l]]− βcol,w,r

12: end for
13: h[l]← i
14: end for
15: (d1, ..., dR)← 0
16: c[i]←∞
17: for i′ ← i+ 1 to min(i+ umax,m+ 1) do
18: u← i′ − i
19: c′ ← αrow,u

20: for r ← 1 to R do
21: dr ← dr + ∆r[i′ − 1]
22: c′ ← c′ + dr ∗ βrow,u,r

23: end for
24: if c′ + c[i′] < c[i] then

25: c[i]← c′ + c[i′]
26: splΠ[i]← i′

27: end if
28: end for
29: end for
30: K ← 0
31: i← 1
32: while i 6= m+ 1 do
33: i′ ← splΠ[i]
34: K ← K + 1
35: splΠ[K]← i
36: i← i′

37: end while
38: splΠ[K + 1]← m+ 1
39: return splΠ[1 : K + 1]
40: end function

Our algorithm owes much of its structure to related
algorithms [46, 22, 23, 25, 24, 25, 26]. For example, an
optimal algorithm for the related problem of “restricted
hypergraph partitioning” (producing contiguous parti-
tions that reduce communication in parallel SpMV) is
described by Grandjean et. al. [22]. However, this al-
gorithm is described for simpler cost functions which do
not apply directly to Problem 5.1. Furthermore, this
algorithm does not consider a column partition. Since
the algorithm is given as a reduction from the hyper-
graph problem to a graph problem, it requires multiple
passes over the input. While all of the cited algorithms
are similar, none of them apply directly.

7.1 Runtime, Optimizations, and Extensions
The body of the loop at line 7 can be executed in O(R)
time and will be repeated at most once for each nonzero
in A. The body of the loop at line 17 can be executed
in O(R) time and will be repeated at most umax times
for each row in A. Initialization takes O(R · m + n)
time. The cleanup loop is accomplished in O(m) time.
Thus, Algorithm 7.1 runs in O(R · (umax ·m+N) + n)
time. In this work, we consider cost functions of rank
at most 3. The number of blocks (3.2) is a rank 1 cost,
the memory usages (3.5) and (3.4) are rank 2 costs, and
we approximate our empirical model (5.6) to rank 3.

In practice, diminishing returns are observed for
max block sizes umax or wmax beyond approximately
12 [30]. Even in theory, increasing the block size to
u′max will only further amortize the index storage over
more rows, so the additional compression is bounded by
a factor of (sindex/umax + svalue)/(sindex/u

′
max + svalue).

When sindex = svalue and umax = 8, doubling umax will
further compress by at most a factor of 18/17.

Because the outer dynamic program loop on line
17 works backwards, all of the innermost loops access
memory in storage order. This also allows us to con-
struct splΠ in place. To improve the empirical running

time of our partitioner, we implemented a specialization
for the case where Φ is the trivial partition. In this case,
Φ−1[j] = j, w is always 1 and the costs are all rank 1,
so much of the algorithm can be simplified.

SpMV is often parallelized. If a coarse-grained par-
tition is applied to the rows or columns so that each
part executes on one of P processors, then any of the
algorithms or heuristics presented can be applied to the
local regions to create fine-grained block subpartitions.
If, however, one wishes to compute the block decompo-
sition before the processor decomposition (partitioning,
for example, block rows instead of rows), the previously
described approach is still a practical option, but con-
catenating the resulting local partitions is not guaran-
teed to be optimal, since it imposes P artificial split
points on the processor boundaries. Instead, one might
choose to compute the best partition for all u2

max combi-
nations of start and end points within boundary regions
of size umax (multiplying the serial workload by umax),
and then stitch these optimal solutions together using
dynamic programming over each region in O(P ∗ umax)
time. This strategy should be considered when umax

is small in comparison to P , but we expect our first
suggestion to be sufficient in practice.

If the blocks in our format are themselves sparse
[43, 47, 48, 49, 50, 51], we may be interested in a
cost function which models both the number of nonzero
blocks and the number of reads from x required to
process the block row. Note that existing contiguous
cache blocking heuristics use aggregate or probabilistic
models to find splits, as opposed to calculating the
actual reuse. If a cost model depends on more than one
simultaneous column partition, we suggest using more
than one copy of h, ∆, and d to calculate costs.

8 Conversion

After producing a partition, we need to convert the
matrix from CSR to VBR or 1D-VBR format. We
use a hash table to compute the size of pos and ofs
in one pass over the matrix, an algorithm quite similar
to that of Algorithms 7.1 and B.1. It is possible to fuse
computation of pos and ofs with the partitioning itself,
but we did not notice enough of a speedup to justify
the added complexity. Our conversion algorithms are
similarly expensive to our partitioners.

If all the rows in each group are identical, as is
the case with partitions produced by the StrictParti-
tioner, the nonzero patterns from the CSR represen-
tation can be copied directly from any row in each part
to form the idx array in 1D-VBR format. We can pack
val through simultaneous iteration over all the rows in
the part, since we don’t need to fill.

If, however, all the rows in each group are not

identical, then we must merge the nonzero patterns
of each row in a part to produce the nonzero block
patterns. If each CSR row contains a sorted list of
the elements in vi, then our goal is to form a sorted
list of the elements in

⋃
i∈Πk

vi. This is a similar
problem to merging w sorted lists. Algorithms exist to
solve such a problem in O(log(w)(|

⋃
i∈Πk

vi|) +
∑
|vi|)

time [52, “HeapMerge”]. Since we also need to fill
all u · (|

⋃
i∈Πk

vi|) entries of the val array with either
nonzeros or explicit zeros, we instead use a linear search
over the rows to find the minimum index, then iterate
over the rows to fill the corresponding elements of idx
and val [52, “LinearSearchMerge”]. The direct merge
algorithm is the simpler choice when u is small, which we
have assumed it is. The algorithm for producing block
rows in VBR or 1D-VBR format is similar enough to
[52, “LinearSearchMerge”] that we omit it. It is enough
to know that the number of operations performed by
the conversion algorithm is proportional to the size of
the resulting format.

9 Results

We ran our programs on the “Haswell” partition of
the “Cori” NERSC Supercomputer. We used a single
core of a 16-core Intel® Xeon® Processor E5-2698 v3
running at 2.3 GHz with 32 KB of L1 cache per core,
256 KB of L2 cache per core, 41 MB of shared L3
cache, and 128 GB of memory. This CPU supports the
AVX2 instruction set, meaning that it supports SIMD
processing with 256 bit vector lanes.

All kernels were implemented1 in Julia 1.5.3 [53].
Because Julia is compiled just-in-time, it enjoys pow-
erful metaprogramming capabilities. This allowed us
to create a custom SpMV subkernel for each block
size in our VBR and 1D-VBR SpMV kernel. Hard-
coding block sizes allows the compiler to perform impor-
tant optimizations like loop unrolling. Since our matri-
ces were real-valued, the value datatypes were floating
point numbers [54], and the index datatypes were 64
bit signed integers. We represented our matrices with
both 64 bit and 32 bit precision, so each SIMD vector
fit 4 or 8 elements, respectively. In our tests, our max-
imum block size was umax = wmax = 8 for Float64 and
umax = wmax = 16 for Float32 because we found that
further increasing umax did not increase performance
by much. If the block size of a row part was 1, we
used scalar instructions. Otherwise, we used one or two
vectors to process the row part. We used the SIMD.jl

1Code is available at https://github.com/willow-ahrens/

SparseMatrix1DVBCs.jl/releases/tag/2005.12414v2 and

https://github.com/willow-ahrens/ChainPartitioners.jl/

releases/tag/2005.12414v2

https://github.com/willow-ahrens/SparseMatrix1DVBCs.jl/releases/tag/2005.12414v2
https://github.com/willow-ahrens/SparseMatrix1DVBCs.jl/releases/tag/2005.12414v2
https://github.com/willow-ahrens/ChainPartitioners.jl/releases/tag/2005.12414v2
https://github.com/willow-ahrens/ChainPartitioners.jl/releases/tag/2005.12414v2

library to emit explicit LLVM vector instructions for
each block size [55]. We benchmark with a warm cache,
meaning that we run the kernel once before beginning
to measure it. We run the Julia garbage collector before
taking each benchmark. After warming up the cache,
each kernel is sampled one million times or until 10 sec-
onds of measurement time is exceeded (we allow the
kernel to complete before stopping), whichever happens
first. All benchmarks use the minimum sampled time.

Our test set includes all the matrices of [9], which
have clear block structure. To diversify our test col-
lection, we also include several matrices with imperfect
block structure from the SuiteSparse Matrix Collection
[56]. This includes matrices with large dense structures
that must be balanced against sparse structures else-
where, such as “exdata 1,” or “TSOPF RS b678 c1,”
matrices with large, dense blocks that may be inter-
rupted by isolated sparse rows and columns, like “Good-
win 071,” “lpi gran,” or “heart3,” and matrices where
nonzeros are merely clustered, rather than appearing in
clear blocks, such as in “ACTIVSg70K,” “scircuit,” or
“rajat26.” The “Janna/*” matrices have clear blocks,
but benefit from merging blocks together. The matrices
are described in Table 1.

We compare several partitioners and matrix for-
mats. The “Strict” label refers to the StrictParti-
tioner algorithm. Note that we also use the special-
ized conversion routine for the “Strict 1D-VBR” case.
The “Overlap (rho = ρ).” label refers to the Overlap-
Partitioner (Algorithm B.1) with a setting of ρ that
worked well in our tests. Our OptimalPartitioner
algorithm (Algorithm 7.1) is tested with 3 different cost
models. The “Min Memory” label refers to minimiz-
ing the footprint of 1D-VBR (3.5) or VBR (3.5). The
“Min Compute” label refers to minimizing the mod-
eled computation time (5.6). The “Min Blocks” label
refers to minimizing the number of blocks (3.2). When
the OptimalPartitioner is used to partition VBR,
we partition the rows first, then the columns, then the
rows again. Further improvement after continued alter-
nation was observed to be negligible, suggesting either
that the initial partitioning problems are close to opti-
mal, or that the row partition is highly influential on
the column partition, and vice-versa.

Since one might use our algorithms in the context
of a sparse iterative solver, where we partition once
and multiply several times, using a partitioner only
produces an overall speedup after a certain number
of SpMV executions. If tVBR partition and tVBR convert

are the measured times to partition and convert, and
tVBR multiply is the time to multiply once, then if we
are to multiply M times, the total time to perform
M multiplications is tVBR partition + tVBR convert + M ·

Table 1: Test matrices used in addition to those of [9].
“Spy” is the sparsity pattern of the matrix A (pixels
represent logarithmic density of a region), and “Zoomed
Spy” is the pattern of a representative 128× 128 region
(pixels represent individual matrix entries). Blue is
zero, and yellow is nonzero.

Spy
Zoomed

Spy
Group / Name
m× n (N)

GHS indef/
exdata 1

6001× 6001 (2269501)

Goodwin/
Goodwin 071

56021× 56021 (1797934)

Hamm/
scircuit

170998× 170998 (958936)

Janna/
Emilia 923

923136× 923136 (41005206)

Janna/
Geo 1438

1437960× 1437960 (63156690)

LPnetlib/
lpi gran

2658× 2525 (20111)

Norris/
heart3

2339× 2339 (682797)

Rajat/
rajat26

51032× 51032 (249302)

TAMU SmartGridCenter/
ACTIVSg70K

69999× 69999 (238627)

TSOPF/
TSOPF RS b678 c1

18696× 18696 (4396289)

tVBR multiply. If the time required to multiply in CSR
is tCSR multiply, then partitioning is the faster approach
only if one plans to perform Mcritical multiplies, where

(9.9) Mcritical =
tVBR partition + tVBR convert

tCSR multiply − tVBR multiply
.

We refer to Mcritical as the critical point. Figure 2
shows performance profiles for all of our partitioners on
the metrics of memory usage, multiplication time, and
critical point, stratified by the floating point precision.
Performance profiles allow us to compare the relative
partition quality visually over the entire test set [57].
Table 2 shows the distribution of running times, mem-
ory usage, and critical points, all normalized to unpar-
titioned CSR, over both precisions.

Our results show that for both VBR and 1D-
VBR, using Algorithm 7.1 to optimize memory usage
or multiplication time consistently produces smaller
or faster VBR and 1D-VBR formats than any other
partitioner, respectively. Practitioners using variably
blocked formats in practice can expect to see improved
compression or performance simply by switching to our
improved partitioning algorithm to split the matrix,
though they may need to use different cost models
depending on their application.

The 1D-VBR format is the more performant choice,
while VBR is capable of better compression. Using
heuristics to partition for 1D-VBR often resulted in
faster matrix multiplication than the best VBR par-
titions. The superior performance of 1D-VBR is due
to implementation differences between the two formats.
All blocks in a 1D-VBR block row are the same size, but
each VBR block requires a random access to the column
partition Φ, and a conditional jump to the appropriate
block width. Our memory minimizing partitioner was
unmatched by any other partitioner for compressing ei-
ther format, but using this partitioner on VBR format
usually yielded the highest compression.

While the heuristics produced quality partitions on
some matrices, minimizing our cost models was effective
on the entire test set, evinced by the superior third
quartile of memory usage and multiplication time for
the “Min Memory” and “Min Compute” partitioners.
A disadvantage of the overlap heuristic is the need to
set the ρ parameter. We plotted values which worked
well in our tests, but it may be necessary to test several
settings to find the best one, an expensive process [58].

When the precision is reduced, the reference CSR
implementation deviates more from the best (blocked)
method. Thus, we can say that the benefits of blocking
are amplified when the precision is halved. Performance
improves because our vector units fit twice the elements,
and compression improves because the 64-bit integer

indices become twice as large as the individual elements,
so there is more incentive to merge blocks. We expect
these trends to continue for further reduced precisions,
especially when the index precision remains the same.

Our dynamic programming algorithm was similarly
efficient to other heuristics. The distribution of criti-
cal points shows that the benefits of partitioning out-
weighed the runtime of partitioning and conversion
within a similar number of multiplications. However,
the simplicity of the “Strict” heuristic and its special-
ized conversion to 1D-VBR format made it a practical
choice in cases where the matrix had clear blocks. The
critical points also show the added partitioning and con-
version costs and reduced performance of VBR format,
only breaking even after triple the multiplications.

10 Conclusions

We present an algorithm for optimally partitioning rows
in a VBR matrix when the columns are fixed. We
apply the algorithm to a novel specialization of VBR
where only rows are blocked, 1D-VBR. Our algorithm
effectively optimizes partitions under a diverse family
of cost models. We show that minimizing an empirical
cost model for SpMV runtime in 1D-VBR format yields
the best performance, and minimizing a cost model for
memory consumption in VBR format yields the best
compression. The benefits of blocking are amplified as
the precision is reduced.

Existing algorithms using variably blocked formats
stand to benefit from employing these techniques to pick
better partitions, without any changes to the algorithms
themselves. Since simultaneous partitioning of rows and
columns for VBR format is NP-hard and 1D-VBR is
faster and supports diverse cost models, practitioners
using two-dimensional aligned block algorithms should
consider one-dimensional reformulations when possible.

We hope to see our techniques applied to new cost
models and contiguous partitioning problems, such as
block decompositions with sparse blocks [47, 48, 50, 51].

1 2 3 4
Factor Of Deviation From Best Method

0

20

40

60

80

100

%
 O

f T
es

t M
at

ric
es

Multiply Time (Float64)

1 2 3 4
Factor Of Deviation From Best Method

0

20

40

60

80

100

%
 O

f T
es

t M
at

ric
es

Multiply Time (Float32)

1 2 3 4
Factor Of Deviation From Best Method

0

20

40

60

80

100

%
 O

f T
es

t M
at

ric
es

Memory Usage (Float64)

1 2 3 4
Factor Of Deviation From Best Method

0

20

40

60

80

100

%
 O

f T
es

t M
at

ric
es

Memory Usage (Float32)

Method
CSR
Strict 1D-VBR
Overlap(0.7) 1D-VBR
Min Blocks 1D-VBR
Min Memory 1D-VBR
Min Compute 1D-VBR
Strict VBR
Overlap(0.8) VBR
Min Blocks VBR
Min Memory VBR
Min Compute VBR

Figure 2: Performance profiles of sparse matrix-vector multiplication time, memory usage, and critical points
for our partitioners on our entire test set. The x axis shows the factor of deviation from the best performing
partitioner and format, and the y axis shows the percentage of test cases achieving such a factor.

Partitioner Memory Used Multiply Time Critical Point
Q. 1 Med. Q. 3 Q. 1 Med. Q. 3 Q. 1 Med. Q. 3

Strict 1D-VBR 0.6 0.808 1 0.573 0.886 1.17 6.57 46.1 ∞
Overlap(0.9) 1D-VBR 0.615 0.746 0.918 0.338 0.545 0.858 10.9 18.4 68.3
Overlap(0.8) 1D-VBR 0.616 0.746 0.918 0.338 0.546 0.902 11.2 18.4 92.5
Overlap(0.7) 1D-VBR 0.619 0.746 0.918 0.331 0.547 0.904 10.9 19 69
Min Blocks 1D-VBR 0.606 0.84 1.32 0.351 0.493 0.806 13.9 19 66.3

Min Memory 1D-VBR 0.562 0.633 0.806 0.347 0.535 0.723 11.7 17.3 32.2
Min Compute 1D-VBR 0.585 0.664 0.857 0.317 0.45 0.589 12.4 16.9 29.1

Strict VBR 0.521 0.696 0.983 0.543 1.55 2.16 29.9 ∞ ∞
Overlap(0.9) VBR 0.575 0.819 1.18 0.508 0.769 1.52 28.8 71.4 ∞
Overlap(0.8) VBR 0.59 0.834 1.19 0.487 0.729 1.56 28.7 68 ∞
Overlap(0.7) VBR 0.605 0.847 1.2 0.501 0.777 1.55 28.5 79.2 ∞
Min Blocks VBR 0.67 1.06 2.8 0.411 0.573 1.81 29 47.1 ∞

Min Memory VBR 0.432 0.56 0.75 0.451 0.6 1.31 38.9 62.1 ∞
Min Compute VBR 0.556 0.721 1.06 0.33 0.512 1.11 36.2 49.7 ∞

Table 2: The distribution of the normalized memory usage, multiply time, and critical point (9.9) over each
matrix, transposition, and precision in our test set of matrices. A critical point of ∞ indicates that no speedup
was observed. All metrics are normalized to unpartitioned CSR representation. The “Q. 1”, “Med”, and “Q. 3”,
columns refer to the least quartile, median, and greatest quartile, respectively, of the corresponding distribution.
The three partitioners with “Min” objectives and the 1D-VBR format are contributions of this work.

References

[1] Yousef Saad. Iterative methods for sparse linear sys-
tems. SIAM, Philadelphia, 2nd edition, 2003.

[2] Richard Vuduc, James W Demmel, and Katherine A
Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. Journal of Physics: Conference Series,
16:521–530, January 2005.

[3] Timothy A. Davis, Sivasankaran Rajamanickam, and
Wissam M. Sid-Lakhdar. A survey of direct methods
for sparse linear systems. Acta Numerica, 25:383–566,
May 2016. Publisher: Cambridge University Press.

[4] James W. Demmel, Stanley C. Eisenstat, John R.
Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A Supern-
odal Approach to Sparse Partial Pivoting. SIAM Jour-
nal on Matrix Analysis and Applications, 20(3):720–
755, January 1999. Publisher: Society for Industrial
and Applied Mathematics.

[5] Yousef Saad. Finding Exact and Approximate Block
Structures for ILU Preconditioning. SIAM Journal on
Scientific Computing, 24(4):1107–1123, January 2003.

[6] Ichitaro Yamazaki, Sivasankaran Rajamanickam, and
Nathan Ellingwood. Performance Portable Supernode-
based Sparse Triangular Solver for Manycore Archi-
tectures. In 49th International Conference on Parallel
Processing - ICPP, ICPP ’20, pages 1–11, New York,
NY, USA, August 2020. Association for Computing
Machinery.

[7] Cleve Ashcraft and Roger Grimes. The influence
of relaxed supernode partitions on the multifrontal
method. ACM Transactions on Mathematical Soft-
ware, 15(4):291–309, December 1989.

[8] Kyungjoo Kim, Sivasankaran Rajamanickam,
George Widgery Stelle, Harold C. Edwards, and
Stephen Lecler Olivier. Task Parallel Incomplete
Cholesky Factorization using 2D Partitioned-Block
Layout. Technical Report SAND-2016-0637R, Sandia
National Lab. (SNL-NM), Albuquerque, NM (United
States), January 2016.

[9] Richard W. Vuduc and Hyun-Jin Moon. Fast Sparse
Matrix-Vector Multiplication by Exploiting Variable
Block Structure. In Laurence T. Yang, Omer F. Rana,
Beniamino Di Martino, and Jack Dongarra, editors,
High Performance Computing and Communications,
Lecture Notes in Computer Science, pages 807–816,
Berlin, Heidelberg, 2005. Springer.

[10] V. Karakasis, G. Goumas, and N. Koziris. Perfomance
Models for Blocked Sparse Matrix-Vector Multiplica-
tion Kernels. In 2009 International Conference on Par-
allel Processing, pages 356–364, September 2009.

[11] Vasileios Karakasis, Georgios Goumas, and Nectarios
Koziris. A Comparative Study of Blocking Storage
Methods for Sparse Matrices on Multicore Architec-
tures. In 2009 International Conference on Computa-
tional Science and Engineering, pages 247–256, Van-
couver, BC, Canada, 2009. IEEE.

[12] Youcef Saad. SPARSKIT: A basic tool kit for sparse
matrix computations. Technical report, May 1990.

[13] Youcef Saad. SPARSKIT: a basic tool kit for sparse
matrix computations - Version 2. 1994.

[14] Karin Remington and Roldan Pozo. NIST Sparse
BLAS: User’s Guide. Technical report, NIST, 1996.

[15] Richard W. Vuduc. Automatic performance tuning
of sparse matrix kernels. PhD thesis, University of
California, Berkeley, CA, USA, January 2004.

[16] Developer Reference for Intel® Math Kernel Library
- Fortran. Technical Report 097, Intel®, 2020.

[17] Manu Shantharam, Anirban Chatterjee, and Padma
Raghavan. Exploiting dense substructures for fast
sparse matrix vector multiplication. The International
Journal of High Performance Computing Applications,
25(3):328–341, August 2011.

[18] Ali Pinar and Michael T. Heath. Improving Perfor-
mance of Sparse Matrix-vector Multiplication. In Pro-
ceedings of the 1999 ACM/IEEE Conference on Super-
computing, SC ’99, New York, NY, USA, 1999. ACM.
event-place: Portland, Oregon, USA.

[19] Richard M. Karp. Reducibility among Combinatorial
Problems. In Raymond E. Miller, James W. Thatcher,
and Jean D. Bohlinger, editors, Complexity of Com-
puter Computations: Proceedings of a symposium on
the Complexity of Computer Computations, held March
20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored
by the Office of Naval Research, Mathematics Program,
IBM World Trade Corporation, and the IBM Research
Mathematical Sciences Department, The IBM Research
Symposia Series, pages 85–103. Springer US, Boston,
MA, 1972.

[20] Christos H. Papadimitriou and Mihalis Yannakakis.
Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43(3):425–
440, December 1991.

[21] Alfredo Buttari, Victor Eijkhout, Julien Langou, and
Salvatore Filippone. Performance Optimization and
Modeling of Blocked Sparse Kernels. The International
Journal of High Performance Computing Applications,
21(4):467–484, November 2007.

[22] Anael Grandjean, Johannes Langguth, and Bora Uçar.
On Optimal and Balanced Sparse Matrix Partitioning
Problems. In 2012 IEEE International Conference on
Cluster Computing, pages 257–265, September 2012.
ISSN: 2168-9253.

[23] Brad Jackson, Jeffrey D. Scargle, David Barnes, Sun-
dararajan Arabhi, Alina Alt, Peter Gioumousis, Elyus
Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and
Tun Tao Tsai. An Algorithm for Optimal Partitioning
of Data on an Interval. IEEE Signal Processing Letters,
12(2):105–108, February 2005. arXiv: math/0309285.

[24] C.J. Alpert and A.B. Kahng. Multiway partition-
ing via geometric embeddings, orderings, and dynamic
programming. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
14(11):1342–1358, November 1995.

[25] Louis H. Ziantz, Can C. Özturan, and Boleslaw K.
Szymanski. Run-time optimization of sparse matrix-

vector multiplication on SIMD machines. In Costas
Halatsis, Dimitrios Maritsas, George Philokyprou, and
Sergios Theodoridis, editors, PARLE’94 Parallel Ar-
chitectures and Languages Europe, Lecture Notes in
Computer Science, pages 313–322, Berlin, Heidelberg,
1994. Springer.

[26] Brian W. Kernighan. Optimal Sequential Partitions of
Graphs. Journal of the ACM (JACM), 18(1):34–40,
January 1971.

[27] Tamara G. Kolda. Partitioning sparse rectangular
matrices for parallel processing. In Alfonso Ferreira,
José Rolim, Horst Simon, and Shang-Hua Teng, edi-
tors, Solving Irregularly Structured Problems in Paral-
lel, Lecture Notes in Computer Science, pages 68–79,
Berlin, Heidelberg, 1998. Springer.

[28] Bruce Hendrickson and Tamara G. Kolda. Graph
Partitioning Models for Parallel Computing. Parallel
Comput., 26(12):1519–1534, November 2000.

[29] Abdurrahman Yaşar and Ümit V. Çatalyürek. Heuris-
tics for Symmetric Rectilinear Matrix Partitioning.
arXiv:1909.12209 [cs], September 2019. arXiv:
1909.12209.

[30] R. Vuduc, J.W. Demmel, K.A. Yelick, S. Kamil,
R. Nishtala, and B. Lee. Performance Optimizations
and Bounds for Sparse Matrix-Vector Multiply. pages
26–26. IEEE, 2002.

[31] Javed Razzaq, Rudolf Berrendorf, Jan P. Ecker, Soenke
Hack, Max Weierstall, and Florian Manuss. The DynB
Sparse Matrix Format Using Variable Sized 2D Blocks
for Efficient Sparse Matrix Vector Multiplications with
General Matrix Structures. International Journal On
Advances in Intelligent Systems, 10(1 and 2):48–58,
June 2017.

[32] Eun-Jin Im. Optimizing the Performance of Sparse
Matrix-Vector Multiplication. PhD thesis, EECS De-
partment, University of California, Berkeley, June
2000.

[33] Eun-Jin Im and Katherine Yelick. Optimizing Sparse
Matrix Computations for Register Reuse in SPAR-
SITY. In Computational Science — ICCS 2001,
Lecture Notes in Computer Science, pages 127–136.
Springer, Berlin, Heidelberg, May 2001.

[34] Eun-Jin Im, Katherine Yelick, and Richard Vuduc.
Sparsity: Optimization Framework for Sparse Ma-
trix Kernels. International Journal of High Perfor-
mance Computing Applications, 18(1):135–158, Febru-
ary 2004.

[35] Ryan Eberhardt and Mark Hoemmen. Optimization of
Block Sparse Matrix-Vector Multiplication on Shared-
Memory Parallel Architectures. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 663–672, May 2016.

[36] Jee W. Choi, Amik Singh, and Richard W. Vuduc.
Model-driven autotuning of sparse matrix-vector mul-
tiply on GPUs. ACM SIGPLAN Notices, 45(5):115,
May 2010.

[37] B.C. Lee, R.W. Vuduc, J.W. Demmel, and K.A. Yelick.
Performance models for evaluation and automatic tun-

ing of symmetric sparse matrix-vector multiply. pages
169–176 vol.1. IEEE, 2004.

[38] W. Ahrens, H. Xu, and N. Schiefer. A Fill Estimation
Algorithm for Sparse Matrices and Tensors in Blocked
Formats. In 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 546–
556, May 2018.

[39] Helen Xu. Fill Estimation for Blocked Sparse Matri-
ces and Tensors. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts In-
stitute of Technology, June 2018.

[40] Willow Ahrens. A Parallel Fill Estimation Algorithm
for Sparse Matrices and Tensors in Blocked Formats.
Thesis, Massachusetts Institute of Technology, 2019.

[41] Virginia Vassilevska and Ali Pinar. Finding Nonover-
lapping Dense Blocks of a Sparse Matrix. February
2004.

[42] Xinhai Chen, Peizhen Xie, Lihua Chi, Jie Liu, and
Chunye Gong. An efficient SIMD compression for-
mat for sparse matrix-vector multiplication. Con-
currency and Computation: Practice and Experience,
30(23):e4800, 2018.

[43] Rajesh Nishtala, Richard W. Vuduc, James W. Dem-
mel, and Katherine A. Yelick. When cache blocking
of sparse matrix vector multiply works and why. Ap-
plicable Algebra in Engineering, Communication and
Computing, 18(3):297–311, May 2007.

[44] A. N. Yzelman. Generalised Vectorisation for Sparse
Matrix: Vector Multiplication. In Proceedings of the
5th Workshop on Irregular Applications: Architectures
and Algorithms, IA3 ’15, pages 6:1–6:8, New York, NY,
USA, 2015. ACM.

[45] Fred G. Gustavson. Two Fast Algorithms for Sparse
Matrices: Multiplication and Permuted Transposi-
tion. ACM Transactions on Mathematical Software
(TOMS), 4(3):250–269, September 1978.

[46] Kevin Aydin, MohammadHossein Bateni, and Vahab
Mirrokni. Distributed Balanced Partitioning via Lin-
ear Embedding †. Algorithms, 12(8):162, August 2019.
Number: 8 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

[47] Aydin Buluc and John R. Gilbert. On the represen-
tation and multiplication of hypersparse matrices. In
2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–11, April 2008. ISSN:
1530-2075.

[48] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo,
John R. Gilbert, and Charles E. Leiserson. Parallel
sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. page 233.
ACM Press, 2009.

[49] Yunming Zhang, Vladimir Kiriansky, Charith Mendis,
Saman Amarasinghe, and Matei Zaharia. Making
caches work for graph analytics. In 2017 IEEE In-
ternational Conference on Big Data (Big Data), pages
293–302, December 2017.

[50] Changwan Hong, Aravind Sukumaran-Rajam, Israt
Nisa, Kunal Singh, and P. Sadayappan. Adaptive

Sparse Tiling for Sparse Matrix Multiplication. In
Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, PPoPP ’19, pages
300–314, New York, NY, USA, February 2019. Associ-
ation for Computing Machinery.

[51] Naveen Namashivayam, Sanyam Mehta, and Pen-
Chung Yew. Variable-Sized Blocks for Locality-Aware
SpMV. In Proc. of the Annual IEEE/ACM Int’l Symp.
on Code Generation and Optimization (CGO), Virtual
Event, Seoul, March 2021.

[52] W.A. Greene. k-way merging and k-ary sorts. In
[Proceedings] 1991 Symposium on Applied Computing,
pages 197–, April 1991. ISSN: null.

[53] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah.
Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 59(1):65–98, January 2017.

[54] IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2019 (Revision of IEEE 754-2008), pages 1–
84, July 2019.

[55] Erik Schnetter, Takafumi Arakaki, Valentin Churavy,
Kristoffer Carlsson, Nicolau Leal Werneck, Steve Kelly,
Gunnar Farnebäck, Miguel Raz Guzmán Macedo,
Matt Bauman, Kenta Sato, and Elliot Saba. es-
chnett/SIMD.jl: v2.8.0, July 2019.

[56] Timothy A. Davis and Yifan Hu. The university of
Florida sparse matrix collection. ACM Transactions
on Mathematical Software, 38(1):1–25, November 2011.

[57] Elizabeth D. Dolan and Jorge J. Moré. Benchmark-
ing optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, January
2002.

[58] R. W. Vuduc and H. Moon. Fast sparse matrix-vector
multiplication by exploiting variable block structure.
Technical Report UCRL-TR-213454, Lawrence Liver-
more National Lab. (LLNL), Livermore, CA (United
States), July 2005.

A Finding Optimal VBR Partitions is
NP-Hard

In this section, we show that Problem 5.1, finding
the row and column partition which maximizes a cost
model f(A,Π,Φ) of the VBR representation of some
matrix A, is NP-Hard by reduction from the Maximum
Cut problem, one of Karp’s 21 NP-Complete problems
[19, 20].

We restate the Maximum Cut problem here for
convenience.

Definition A.1. (Maximum Cut) Given an undi-
rected graph G = (V,E) with m nodes and n edges, split
V into two sets C1 ⊂ V and C2 ⊂ V where C1 ∩C2 = ∅
and the number of edges between C1 and C2 is maxi-
mized.

Theorem A.1. Problem 5.1 is NP-Hard for any
umax ≥ 2 and wmax ≥ 2 and cost functions of the form

(5.7) f(A,Π,Φ) = s ·Nindex +Nvalue

where s ≥ 1 is constant.

Proof. Assume we are given an instance of Maximum
Cut (Problem A.1). We first define a matrix A in terms
of G and s, then show a correspondence between a class
of partitions of A and cuts in G. Finally, we show
that the Π and Φ which optimize (5.7) correspond to
a maximum cut through G.

Let A be an µm×µn matrix of zeros and nonzeros,
where nonzeros are represented with x. Unless stated
otherwise, entries of A are defined to be zero. Fix an
ordering of the edges of G, and let ej = (i1, i2) where
i1 < i2 be the jth edge in this ordering of G. We will
insert a µ × µ gadget into A at each endpoint of ej ,
where

µ = 3 + µ1 + (1 + µ1)µ2 + 2(1 + µ1)µ3(A.1)

µ1 = bs+ 1c(A.2)

µ2 = 32(A.3)

µ3 = d28s− 10e(A.4)

These constants depend on the relative weights that
s assigns to each block and the size of each block.
They are larger to make the proof shorter; making
them large allows us to upper bound µ3 by 28s − 9
when calculating the cost of each gadget. To give an
example of some smaller constants, if s = 1, we can use
µ1 = 2, µ2 = 3, µ3 = 1.

If we think of A as being tiled with µ× µ tiles, the
placement of these tiles is analogous to the incidence
matrix representation of G, so that rows of tiles cor-
respond to vertices and columns of tiles correspond to

edges. We insert the gadget B1 at the intersection of
the ith1 tile row and jth tile column.

B1 =



x · · · x · · · x · · · · · ·
x · · · x · · · · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...
x

...
...

...


We insert the gadget B2 at the intersection of the ith2
tile row and jth tile column.

B2 =



x · · · x · · · x · · · · · ·
x · · · x · · · · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...
x

...
...

...


where the upper left patterns occur once, the pat-

terns second to the right and the bottom are repeated µ2

times, and the two rightmost and bottommost patterns
are repeated µ3 times. All patterns are followed by µ1

rows or columns of zeros. Figure 3 gives an example of
A for some G.

The gadgets are identical except for the upper left
3 × 3 pattern. Thus, the patterns on the top of the
gadgets are column-aligned and the patterns on the left
are row-aligned across gadget rows and gadget columns.
We refer to the resulting fully zero µ1 rows (resp.
columns) as filler rows (resp. columns).

We start by arguing that it is never optimal to
produce a partition with a row part that contains both
filler rows and non-filler rows. A symmetric argument
holds for the columns.

First, consider the case where the row part contains
filler rows on the top or bottom. Separating these rows
from the part reduces the sizes Nvalue of the blocks in
that part without changing the number Nindex of blocks,
so the part cannot have been optimal.

Second, if the row part does not start or end with a
filler row, it must contain filler rows. Since the filler rows

inA occur in contiguous groups of size µ1, this part must
contain such a group. Consider a block in this part.
If the block contains nonzeros on only one side of the
filler rows, then separating the rows strictly reduces the
size of the block without adding any new blocks. If the
block contains nonzeros on both sides of the filler rows,
then removing the rows creates a block, but deletes at
least µ1 explicitly stored zero values. Since µ1 > s,
separating these filler rows still reduces the cost of the
partition, so it cannot have been optimal.

Therefore, optimal partitions do not merge different
patterns together. We won’t concern ourselves with
whether the filler rows have been merged together, since
it doesn’t change the cost function. Since the patterns
on top consist of only one column, and the patterns on
the side consist of only one row, the only undetermined
piece of our optimal partition is the partition of the first
three rows and columns of each gadget row and gadget
column, respectively.

There remains only four cases for the rows. Either
each row lies in a separate part, all rows share a part,
the first two rows share a part, or the last two rows share
a part. A symmetric argument holds for the columns.

Sections A.1 and A.2 exhaustively check that
for all cases where both the first three rows and
columns of a gadget have two parts each (Π,Φ ∈
{[1:1, 2:3, ...], [1:2, 3:3, ...]}),

(A.5) f(B1,Π,Φ) ≤ 146 + 263s+ 112s2

and that in all the other cases,

(A.6) f(B1,Π,Φ) ≥ 147 + 263s+ 112s2

The exhaustive proofs for B2 are symmetric, so we omit
them.

Assume we start with a row and column partition
where only the first three rows and columns of each
gadget share parts in the partition. For every row or
column part with three members, we split off one row
or column into a different part. For any case where the
first three rows or columns of a gadget row or column
all belong to different parts, we merge two of the rows
or columns. For every gadget in our initial partition
whose first three rows and columns had two parts
each, it’s blocks will be unchanged. For every other
gadget, the cost will be strictly reduced. Thus, optimal
partitions only merge pairs of rows and columns, and
these pairs occur in the first three rows or columns of
each gadget row or column. In this case, the cost of
every subassembly is the same except for the upper left
3× 3 pattern of each gadget. Therefore, the remainder
of the argument focuses on these assemblies.

At this point, we can establish a correspondence
between cuts in the graph and partitions. Let (C1, C2)

be a cut in the graph. We will define a row partition
Π corresponding to this cut. Unless stated otherwise,
rows in this partition are assigned to distinct parts. If
a vertex i lies in C1, then we merge the first and second
rows of the corresponding gadget row. If our vertex i
lies in C2, then we merge the second and third rows of
the gadget row. Consider the gadgets corresponding to
an edge ej = (i1, i2). Notice that if vertices i1 and i2
lie in the same part, C1 for example, we have one of the
following situations:

vi ∈ V1

Π = [1:2, 3:3]

 x 0
0 x

x


vi′ ∈ V1

Π = [1:2, 3:3]

 0 0 x
0 x 0
x 0


ej ,Φ = [1:2, 3:3]

or

 x 0 0
0 x 0

0 x


 0 x

x 0
x


ej ,Φ = [1:1, 2:3]

The cost of either arrangement is f = 13+5s. However,
if vertices i1 and i2 lie in different parts, C1 and C2, for
instance, the situation is as follows:

vi ∈ V1

Π = [1:2, 3:3]

 x 0
0 x

x


vi′ ∈ V2

Π = [1:1, 2:3]

 x
0 x
x 0


ej ,Φ = [1:2, 3:3]

or

 x 0 0
0 x 0

0 x


 0 x

0 x 0
x 0 0


ej ,Φ = [1:1, 2:3]

Since these are the only two gadgets in the column
corresponding to this edge, we are free to choose a
column partition. The above partition of minimal cost
has a cost of f = 10 + 4s, less than the case where the
vertices shared an edge.

Thus, the cost of an optimal column partition
corresponding to the row partition representation of a
cut can be expressed as a constant minus 3 + s times
the number of cut edges. Since there is a bijection
between cuts and our “pairwise” row partitions (one
of which we know to be optimal), producing an optimal
partition of rows and columns is equivalent to finding
the maximum cut in G. If we treat s as a constant, our
reduction imposes only a constant factor of overhead in
m and n, and Problem A.1 is reducible to Problem 5.1
in polynomial time.

Notice that our proof of Theorem A.1 makes no
assumption on the size of umax or wmax, asking only
that they are at least 2 and enforcing pairwise partitions

G = 1

2

3

4

A =



x 0 x x x x x 0 x x x x x 0 x x x x
0 x x x x 0 0 x x x x 0 0 x x x x 0

x x x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x 0 x 0 x 0

x x x

x x x x x x x x x x
0 x x x x 0 x 0 x x x 0
x 0 x x x x 0 x x x x x

x x x x x x

x x x x x x

x x x x x x

x 0 x

x 0 x

x x x x x 0 x x x x x
0 x x x x 0 0 x 0 x x x 0
x 0 x x x x x 0 0 x x x x

x x x x x x

x x x x x x

x x x x x x

x 0 x

x 0 x

x x x x x
0 x x x x 0
x 0 x x x x

x x x

x x x

x x x

x 0

x



Figure 3: An example of our reduction for a simple graph G. Recall that rows of gadgets correspond to vertices,
and columns of gadgets correspond to edges, so that the gadget positions in A are analogous to an incidence
matrix (not an adjacency matrix) representation of G. The maximum cut in G is shown, and the corresponding
optimal partition of A under the cost function where s = 1 is shown. Notice that gadgets corresponding to edges
that cross the cut cost less than the gadgets of edges that do not cross the cut.

with the cost function. We chose this proof technique
since the cost function is realistic and in some situations
there may be no limit on the sizes of blocks (wmax = n).
However, it requires large gadgets when s is large.
Alternative gadgets can be used in situations where s
is large by instead using umax and wmax to constrain
the sizes of blocks and choosing different gadgets. This
leads us to Theorem A.2, which corresponds to the case
where s is large enough that Nvalue would be considered
negligibly small.

Theorem A.2. Problem 5.1 is NP-Hard for any
umax ≥ 2 and wmax ≥ 2 and the cost function

(5.8) f(A,Π,Φ) = Nindex.

Proof. The proof is similar to that of Theorem A.1, but
because umax and wmax are the only factors limiting the
size of blocks, we will use different gadgets. Since the
rest of the proof is so similar, we only describe the new
gadgets.

Let B1 be a 2umax + 1 × 2wmax + 1 matrix whose
upper left umax + 1 × wmax + 1 subregion is nonzero,
save for the upper right and lower left entries of the
subregion, and zero everywhere else. Let B2 be the same
as B1, except B2’s upper left and lower right entries
of the dense subregion are zero and the upper right
and lower left entries of the upper left subregion are
nonzero. For example, if umax = wmax = 3, our gadgets
are defined as:

B1 =


x x x · · ·
x x x x · · ·
x x x x · · ·

x x x · · ·
...

...
...

...

 , B2 =


x x x · · ·

x x x x · · ·
x x x x · · ·
x x x · · ·
...

...
...

...



Our cost function asks us to minimize the total
number of blocks. Since the dense region is of size
umax+1×wmax+1, each gadget must contribute at least
three blocks to this cost function. This can be achieved
with one horizontal and one vertical split in the dense
region that isolates one of the zeros on the corners. Any
other decomposition with a single horizontal and single
vertical split produces four blocks. Thus, when vertices
i1 and i2 lie on the same side of the cut, this corresponds
to one of the following situations (we keep our example

value of umax = wmax = 3):

vi ∈ V1,Π
= [1:3, 4:4]


x x x 0
x x x x
x x x x
0 x x x



vi′ ∈ V1,Π
= [1:3, 4:4]


0 x x x
x x x x
x x x x
x x x


ej ,Φ = [1:3, 4:4]

or


x x x 0
x x x x
x x x x

x x x




0 x x x
x x x x
x x x x
x x x 0


ej ,Φ = [1:1, 2:4]

When vertices i1 and i2 like on different sides of the cut,
we have:

vi ∈ V1,Π
= [1:3, 4:4]


x x x 0
x x x x
x x x x
0 x x x



vi′ ∈ V2,Π
= [1:1, 2:4]


0 x x x
x x x x
x x x x
x x x 0


ej ,Φ = [1:3, 4:4]

or


x x x 0
x x x x
x x x x

x x x




x x x
x x x x
x x x x
x x x 0


ej ,Φ = [1:1, 2:4]

By choosing the correct column partition, the case
where vertices i1 and i2 lie on different sides of the cut
can be made to use only 6 blocks. When these vertices
are on the same side of the cut we require 7 blocks.

Corollary A.1 addresses the hardness of the sym-
metric case, when the row and column partitions are
constrained to be the same.

Corollary A.1. Even when the row and column par-
titions are constrained to be the same, Problem 5.1 is
NP-Hard for any umax ≥ 2, wmax ≥ 2 and the cost
functions of Theorems A.1 or A.2.

Proof. We proceed by reducing the asymmetric case to
the symmetric one. Consider an instance of Problem 5.1
for an m×n matrix A. We then form the m+n×m+n
matrix

B =

[
0 A
Aᵀ 0

]
.

We then solve our symmetric problem on B. Note that
we can match or improve the cost of any partition with
a group which spans both sides of our block matrix by
simply splitting that group along the boundary, since
no nonzeros are shared between the two sides of the

boundary. We set Π to be the partition of the first
m rows/columns of B, and Φ to be the partition of
the last n rows/columns of B. Note that the cost of
our symmetric partition on B will be twice that of the
resulting cost of our partition of A, and any partition of
A can induce a corresponding partition of B. Thus, a
solution to our symmetric problem on B would solve the
original problem of partitioning A, and the symmetric
case is NP-hard as well.

A.1 Exhaustively Checking (A.5)
Π = [1:1, 2:3, ...],Φ = [1:1, 2:3, ...]

x · · · x · · · x · · · · · ·
x 0 · · · x · · · · · · 0 · · ·
0 x · · · x · · · · · · x · · ·

...
...

...
x x x
...

...
...

x
...

...
...

0 x
...

...
...


f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 6µ3) + (2 + 4µ2 + 4µ3)s

= 197 + 6d28s− 10e+ (130 + 4d28s− 10e)s
≤ 143 + 262s+ 112s2

≤ 146 + 263s+ 112s2

Π = [1:1, 2:3, ...],Φ = [1:2, 3:3, ...]

x 0 · · · x · · · x · · · · · ·
0 x 0 · · · x · · · · · · 0 · · ·
0 0 x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0
...

...
...
x

...
...

...


f(B1,Π,Φ) = Nvalue +Nindexs

= (8 + 6µ2 + 6µ3) + (3 + 4µ2 + 4µ3)s

= 200 + 6d28s− 10e+ (131 + 4d28s− 10e)s
≤ 146 + 263s+ 112s2

Π = [1:2, 3:3, ...],Φ = [1:1, 2:3, ...]



x 0 0 · · · x · · · x · · · · · ·
0 x 0 · · · x · · · 0 · · · · · ·

0 x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...

0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (8 + 6µ2 + 6µ3) + (3 + 4µ2 + 4µ3)s

= 200 + 6d28s− 10e+ (131 + 4d28s− 10e)s
≤ 146 + 263s+ 112s2

Π = [1:2, 3:3, ...],Φ = [1:2, 3:3, ...]



x 0 · · · x · · · x · · · · · ·
0 x · · · x · · · 0 · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 6µ3) + (2 + 4µ2 + 4µ3)s

= 197 + 6d28s− 10e+ (130 + 4d28s− 10e)s
≤ 143 + 262s+ 112s2

≤ 146 + 263s+ 112s2

A.2 Exhaustively Checking (A.6)

Π = [1:3, ...],Φ = [1:3, ...]



x 0 0 · · · x · · · x · · · 0 · · ·
0 x 0 · · · x · · · 0 · · · 0 · · ·
0 0 x · · · x · · · 0 · · · x · · ·
...

...
...

x x x
...

...
...

x 0 0
...

...
...

0 0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 12µ3) + (1 + 2µ2 + 4µ3)s

= 201 + 12d28s− 10e+ (65 + 4d28s− 10e)s
≥ 81 + 361s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:3, ...],Φ = [1:1, 2:3, ...]



x 0 0 · · · x · · · x · · · 0 · · ·
0 x 0 · · · x · · · 0 · · · 0 · · ·
0 0 x · · · x · · · 0 · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...

0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 9µ3) + (2 + 3µ2 + 4µ3)s

= 201 + 9d28s− 10e+ (98 + 4d28s− 10e)s
≥ 111 + 310s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:3, ...],Φ = [1:2, 3:3, ...]



x 0 0 · · · x · · · x · · · 0 · · ·
0 x 0 · · · x · · · 0 · · · 0 · · ·
0 0 x · · · x · · · 0 · · · x · · ·
...

...
...

x x x
...

...
...

x 0
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 9µ3) + (2 + 3µ2 + 4µ3)s

= 201 + 9d28s− 10e+ (98 + 4d28s− 10e)s
≥ 111 + 310s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:3, ...],Φ = [1:1, 2:2, 3:3, ...]



x 0 0 · · · x · · · x · · · 0 · · ·
0 x 0 · · · x · · · 0 · · · 0 · · ·
0 0 x · · · x · · · 0 · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 8µ3) + (3 + 4µ2 + 4µ3)s

= 201 + 8d28s− 10e+ (131 + 4d28s− 10e)s
≥ 121 + 315s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:1, 2:3, ...],Φ = [1:3, ...]



x 0 0 · · · x · · · x · · · · · ·
0 x 0 · · · x · · · · · · 0 · · ·
0 0 x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0 0
...

...
...

0 0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 9µ3) + (2 + 3µ2 + 4µ3)s

= 201 + 9d28s− 10e+ (98 + 4d28s− 10e)s
≥ 111 + 310s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:1, 2:3, ...],Φ = [1:1, 2:2, 3:3, ...]



x · · · x · · · x · · · · · ·
x 0 · · · x · · · · · · 0 · · ·
0 x · · · x · · · · · · x · · ·

...
...

...
x x x
...

...
...

x
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 5µ3) + (3 + 5µ2 + 4µ3)s

= 197 + 5d28s− 10e+ (163 + 4d28s− 10e)s
≥ 147 + 263s+ 112s2

Π = [1:2, 3:3, ...],Φ = [1:3, ...]



x 0 0 · · · x · · · x · · · · · ·
0 x 0 · · · x · · · 0 · · · · · ·
0 0 x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0 0
...

...
...

0 0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 9µ3) + (2 + 3µ2 + 4µ3)s

= 201 + 9d28s− 10e+ (98 + 4d28s− 10e)s
≥ 111 + 310s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:2, 3:3, ...],Φ = [1:1, 2:2, 3:3, ...]



x 0 · · · x · · · x · · · · · ·
0 x · · · x · · · 0 · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 5µ3) + (3 + 5µ2 + 4µ3)s

= 197 + 5d28s− 10e+ (163 + 4d28s− 10e)s
≥ 147 + 263s+ 112s2

Π = [1:1, 2:2, 3:3, ...],Φ = [1:3, ...]



x 0 0 · · · x · · · x · · · · · ·
0 x 0 · · · x · · · · · · · · ·
0 0 x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0 0
...

...
...

0 0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 8µ3) + (3 + 4µ2 + 4µ3)s

= 201 + 8d28s− 10e+ (131 + 4d28s− 10e)s
≥ 121 + 315s+ 112s2

≥ 147 + 263s+ 112s2

Π = [1:1, 2:2, 3:3, ...],Φ = [1:1, 2:3, ...]



x · · · x · · · x · · · · · ·
x 0 · · · x · · · · · · · · ·
0 x · · · x · · · · · · x · · ·

...
...

...
x x x
...

...
...

x
...

...
...

0 x
...

...
...



f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 5µ3) + (3 + 5µ2 + 4µ3)s

= 197 + 5d28s− 10e+ (163 + 4d28s− 10e)s
≥ 147 + 263s+ 112s2

Π = [1:1, 2:2, 3:3, ...],Φ = [1:2, 3:3, ...]

x 0 · · · x · · · x · · · · · ·
0 x · · · x · · · · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x 0
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (5 + 6µ2 + 5µ3) + (3 + 5µ2 + 4µ3)s

= 197 + 5d28s− 10e+ (163 + 4d28s− 10e)s
≥ 147 + 263s+ 112s2

Π = [1:1, 2:2, 3:3, ...],Φ = [1:1, 2:2, 3:3, ...]

x · · · x · · · x · · · · · ·
x · · · x · · · · · · · · ·

x · · · x · · · · · · x · · ·
...

...
...

x x x
...

...
...

x
...

...
...
x

...
...

...



f(B1,Π,Φ) = Nvalue +Nindexs

= (9 + 6µ2 + 4µ3) + (3 + 6µ2 + 4µ3)s

= 201 + 4d28s− 10e+ (195 + 4d28s− 10e)s
≥ 161 + 267s+ 112s2

≥ 147 + 263s+ 112s2

B Improved Overlap Heuristic

Here, we optimize the overlap heuristic of [2, 16] to
minimize random access to the column hash table h.
Instead of checking whether hj has been set to true, we
can check whether hj = i. When we start a new group,
we will use a different value of i and avoid reinitialization
of h. When checking if row i′ should be added to the
current part, we can also add vi′ to the hash table to
avoid reading vi′ twice. However, this may overwrite

the entries which contain i with i′, so if hj = i, we can
indicate that it was i when we overwrote it by negating
i′ before writing to h. Thus, our hash table can check
the similarity between the two rows and add a new
row at the same time, reducing the number of random
accesses to a minimum (once per nonzero element). Our
improved overlap pseudocode is presented in Algorithm
B.1.

Algorithm B.1. Given an overlap similarity ρ, parti-
tion the rows of m×n matrix A producing no part with
more than umax rows. Return Π, pos, and ofs.

Require: m > 1, umax > 1, 0 < ρ ≤ 1.
1: function OverlapPartitioner(A, ρ)
2: Allocate length-(m+ 1) vector splΠ
3: Allocate length-n vector h initialized to 0
4: splΠ[1]← 1
5: i← 1
6: K ← 0
7: d← |v1|
8: for i′ ← 2 to m do
9: d′ ← d

10: c← 0
11: for j ← vi′ in ascending order do
12: if h[j] = ±i then
13: c← c+ 1
14: h[j]← −i′
15: else if i < h[j] then
16: h[j]← i′

17: else if h[j] < −i then
18: c← c+ 1
19: h[j]← −i′
20: else
21: d′ ← d′ + 1
22: h[j]← i′

23: end if
24: end for
25: u← i′ − i
26: if u = umax or c < ρ ·min(|vi|, |v′i|) then
27: K ← K + 1 . Start a new partition.
28: splΠ[K + 1]← i′

29: i← i′

30: d← |vi′ |
31: else
32: d← d′ . Expand current partition.
33: end if
34: K ← K + 1
35: u← (m+ 1)− i
36: splΠ[K + 1]← m+ 1
37: end for
38: return splΠ[1 : K + 1]
39: end function

	1 Introduction
	2 Partitioning
	3 Sparse Formats
	3.1 Related Sparse Formats

	4 Blocked SpMV
	5 Partitioning Problem Statement
	5.1 1D Partitioning and Alternation

	6 Heuristics
	7 Optimal Algorithm
	7.1 Runtime, Optimizations, and Extensions

	8 Conversion
	9 Results
	10 Conclusions
	A Finding Optimal VBR Partitions is NP-Hard
	A.1 Exhaustively Checking (A.5)
	A.2 Exhaustively Checking (A.6)

	B Improved Overlap Heuristic

