
Galley: ModernQuery Optimization for Sparse Tensor Programs
Kyle Deeds

kdeeds@cs.washington.edu

University of Washington

United States

Willow Ahrens

wahrens@mit.edu

Massachusetts Institute of Technology

United States

Magda Balazinska

magda@cs.washington.edu

University of Washington

United States

Dan Suciu

suciu@cs.washington.edu

University of Washington

United States

ABSTRACT
The tensor programming abstraction has become a foundational

paradigm for modern computing. This framework allows users

to write high performance programs for bulk computation via a

high-level imperative interface. Recent work has extended this

paradigm to sparse tensors (i.e. tensors where most entries are not

explicitly represented) with the use of sparse tensor compilers. These
systems excel at producing efficient code for computation over

sparse tensors, which may be stored in a wide variety of formats.

However, they require the user to manually choose the order of

operations and the data formats at every step. Unfortunately, these

decisions are both highly impactful and complicated, requiring

significant effort to manually optimize. In this work, we present

Galley, a system for declarative sparse tensor programming. Galley

performs cost-based optimization to lower these programs to a

logical plan then to a physical plan. It then leverages sparse tensor

compilers to execute the physical plan efficiently. We show that

Galley achieves high performance on a wide variety of problems

including machine learning algorithms, subgraph counting, and

iterative graph algorithms.

CCS CONCEPTS
• Information systems→ Query optimization; • Software and
its engineering→ Domain specific languages; •Mathematics of
computing → Mathematical software.

KEYWORDS
Query Optimization, Sparse Tensors, Array Programming, Program

Optimization

1 INTRODUCTION
In recent years, the tensor programming model has become ubiq-

uitous across different fields of computation. Popularized by its

use in deep learning, it has been applied to problems such as re-

lational query processing [6, 18, 24], data cleaning [34], graph al-

gorithms [35], and scientific computing [25, 32, 37] among others.

This model promises a high-level imperative abstraction which is

highly efficient as long as the problem can be posed in terms of

tensor (i.e. array) operations. By doing so, it insulates the user from

the many low level concerns that are crucial to achieving good per-

formance. This has allowed experts in fields like data science and

machine learning to take advantage of a wide range of hardware in-

frastructure without having to become experts in high performance

computing as well.

Traditional tensor processing frameworks are built on collections

of hand-optimized functions, called kernels, which each compute

an operation over dense tensors [1, 5, 17, 27]. The operation can be

simple like a matrix-vector multiplication, or it can be a fusion of

multiple semantic operations, like 𝐴(𝐵 +𝐶). However, most data is

fundamentally sparse (i.e. most entries are a fill value like 0) such as

graph data, one-hot encodings, relational data, meshes in physical

simulations, sparse neural networks, and others. Even materializing

these datasets as dense arrays can be prohibitively costly, so it’s

crucial to perform the computation over its compressed, sparse

format [23].

To support sparse data, each framework needs to offer many

distinct implementations of each operation, one for each combina-

tion of input formats. Each input can either be stored densely or

in one of many sparse formats, e.g. CSR, CSC, COO. This has lead

to an explosion of required kernels as the number of operations

and formats both continue to grow. Understandably, these frame-

works have been unable to keep up with this implementation effort,

resulting in spotty coverage for operations over sparse data [21].

Example 1. Consider logistic regression over 𝑛 data points and
𝑑 features where 𝑋 ∈ R𝑛×𝑑 is the feature matrix and 𝜃 ∈ R𝑑 is the
parameter vector. Inference is defined as

𝑃𝑖 = 𝜎 (
∑︁
𝑗

𝑋𝑖 𝑗𝜃 𝑗 ) (1)

where 𝜎 is the sigmoid function. To compute 𝑌𝑖 =
∑
𝑗 𝑋𝑖 𝑗𝜃 𝑗 in the

dense case, one could use the ’matmul’ function from the Numpy
library. On these inputs, this function specializes to an efficient, hand-
coded implementation of dense matrix-vector multiplication. However,
if any combination of 𝑋 , 𝜃 , and 𝑌 can be sparse, Numpy needs to pro-
vide eight distinct implementations of matrix-vector multiplication.

To address this issue, the scientific computing community has

adopted sparse tensor compilers (STCs) [2, 8, 20, 23, 31]. These com-

pilers take in a high level imperative tensor program and, separately,

a description of the input tensors’ formats
1
. They automatically pro-

duce an efficient kernel implementation in low level code (LLVM,

MLIR, etc.). Thus, STCs offer a form of data independence, by allow-

ing the user to separately specify the algorithm and the data layout.

1
Some systems separate declarative and imperative concerns with a scheduling

language. However, the user still controls both aspects.
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0. # Specified format for input tensors
1. FUNC log_regression(X::Dense(Sparse()), 𝜃::Dense())
2. # Manually defined intermediate format
3. R = Dense()
4. # Manually defined loop order
5. FOR i=_
6. FOR j=_
7. # Manually defined iteration algorithm
8. R[i] += X[i::iter,j::iter]*𝜃[j::lookup]
9. END
10. END
11. P = Dense()
12. FOR i=_
13. P[i] = 𝜎(R[i::iter])
14. END
15. END

Figure 1: Logistic Regression Impl. in Simplified Sparse Ten-
sor Compiler Language.

For example, Fig. 1 shows a kernel definition for Ex. 1 written in

Finch, an STC language [2]. The Dense/Sparse input formats are

specified in line 1 and are separate from the imperative code in

lines 5-15.

However, STCs require users to make a series of complex deci-

sions to produce an efficient implementation. First, the user needs to

break their program into a sequence of aggregations. Suppose that

the feature matrix in Ex. 1 is the result of a matrix multiplication,

𝑋 = 𝐴 · 𝐵, and Eq. (1) becomes 𝑌𝑖 = 𝜎 (∑𝑗𝑘 𝐴𝑖𝑙𝐵𝑙 𝑗𝜃 𝑗 ). The user

must choose to sum over 𝑗 or 𝑙 first, resulting in vastly different

runtimes [4, 41]. Then, for each aggregate, the user needs to choose

the output format, loop order, and iteration algorithm. Consider

Fig 1. The user must choose the output format for the intermediate R
(line 3). In this case, she chose a Dense format rather than a Sparse
format which would be ≈ 10× slower. Then, the user chooses the

loop order (lines 5-6). She chose 𝑖-then- 𝑗 which is asymptotically

faster than 𝑗-then-𝑖 because each out-of-order access to 𝑋 requires

a full scan of the tensor. Lastly, she picks a merge algorithm for each

loop that describes how to iterate through the non-zero indices (line

8). Here, 𝑋 is iterated through and each non-zero 𝑗 is looked up
in 𝜃 . If she chose to iterate through 𝜃 , each inner loop would scan

the entire vector. While STCs allow users to separate the algorithm

from the data formats, the user is still responsible for optimizing

her program to achieve good performance.

In this paper, we propose Galley, a system for declarative sparse

tensor programming. Users write tensor programs in a declarative

language based on the Einsum notation, similar to Equation (1), and

Galley automatically produces an optimized STC implementation.

First, it restructures the program into a sequence of aggregation

steps, minimizing the total computation and materialization costs

(Sec. 5). Then, Galley optimizes each step by selecting the optimal

formats for all intermediate tensors, the loop order, and the access

method for each index access (Sec. 6). This is all guided by a system

for estimating sparsity via statistics on the input tensors (Sec. 7).

Galley builds on fundamental principles from cost-based query

optimization while developing new techniques that are specific to

producing optimized code for sparse tensor compilers[22].

In the first phase, Galley rewrites the input program into a

sequence of aggregation steps by adapting the variable elimina-

tion framework. This reduces a complex rewriting problem to the

problem of finding an optimal elimination order. However, this ap-

proach has previously only been defined for sum-product queries.

To handle arbitrary sparse tensor algebra programs, we extend it to

non-distributive functions (e.g.

∑
𝑖𝑚𝑎𝑥 (𝐴𝑖 𝑗 , 𝐵 𝑗 )), disjunctive func-

tions (e.g.

∑
𝑖 𝐴𝑖 + 𝐵𝑖 =

∑
𝑖 𝐴𝑖 +

∑
𝑖 𝐵𝑖 ), and internal aggregates (e.g.∑

𝑗 𝐴 𝑗
√︁∑

𝑘 𝐵 𝑗𝑘 ). In Sec. 9, we show that these optimizations pro-

duce up to a 100× speedup for machine learning algorithms over

composite feature matrices. After this phase, our program has been

converted to a sequence of aggregates over pointwise expressions,

i.e. the Logical Plan dialect in Fig. 4.

Next, Galley’s physical optimizer transforms each aggregate

into an efficient STC kernel by choosing the loop order, output

format, and merge algorithm. Because sparse outer loops avoid

inner iterations, a good loop ordering can significantly improve

performance. Galley finds the optimal loop order with a novel

combination of branch-and-bound and dynamic programming tech-

niques. Following the modern tensor format abstraction (i.e. the

fibertree abstraction), Galley then chooses a format for each dimen-

sion of the output by examining both the sparsity and write pattern

(random vs sequential)[8, 14, 36]. Lastly, for each loop index, we

select one input to iterate over and perform lookups on the others.

All of Galley’s optimizations are guided by a framework for

estimating the sparsity of intermediate results from statistics on

the inputs. The core of this is a minimal interface for composing

statistics about inputs to infer statistics about outputs. This makes

incorporating a new kind of sparsity statistic as simple as imple-

menting 5 functions to; 1) collect statistics on inputs 2-3) handle

conjunctive and disjunctive point-wise operations 4) handle aggre-

gates and 5) produce sparsity estimates. We demonstrate this by

implementing a naive estimator based on uniformity assumptions

and a worst-case estimator based on cardinality bounds.

Example 2. In Example 1, we assumed that 𝑋 is given directly.
However, feature matrices are generally assembled frommore basic in-
puts. Suppose 𝑆𝑖𝑝𝑐 ∈ B𝑛𝑖×𝑛𝑝×𝑛𝑐 is a boolean sparse tensor where each
non-zero entry is a sale, 𝑖 , of product, 𝑝 , to customer, 𝑐 . 𝑃𝑝 𝑗 ∈ R𝑛𝑝×𝑑
and 𝐶𝑐 𝑗 ∈ R𝑛𝑐×𝑑 are smaller matrices holding numeric features
about products and customers. The feature dimension, indexed by
𝑗 , represents both product and customer features, but each feature
comes from either 𝑃𝑝 𝑗 or 𝐶𝑐 𝑗 . So, each column is non-zero in either
𝑃 or 𝐶 , and they are concatenated by addition. 𝑋 is now defined
as 𝑋𝑖 𝑗 =

∑
𝑝𝑐 𝑆𝑖𝑝𝑐 (𝑃𝑝 𝑗 + 𝐶𝑐 𝑗 ). Galley’s logical optimizer can take

advantage of 𝑋 ’s structure by pushing 𝜃 down into its definition,

𝑌𝑖 = 𝜎 (
∑︁
𝑗𝑝𝑐

𝑆𝑖𝑝𝑐𝑃𝑝 𝑗𝜃 𝑗 +
∑︁
𝑗𝑝𝑐

𝑆𝑖𝑝𝑐𝐶𝑐 𝑗𝜃 𝑗 )

We can then push down the summations,

𝑌𝑖 = 𝜎
©­«
∑︁
𝑝𝑐

©­«𝑆𝑖𝑝𝑐
∑︁
𝑗

(
𝑃𝑝 𝑗𝜃 𝑗

)ª®¬ +
∑︁
𝑝𝑐

©­«𝑆𝑖𝑝𝑐
∑︁
𝑗

(
𝐶𝑐 𝑗𝜃 𝑗

)ª®¬ª®¬ (2)
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Figure 2: Fibertree Format Abstraction

By doing this, Galley only materializes vector intermediates rather
than the full feature matrix. On similar examples, Sec. 9 shows that
this can result in up to 100× faster execution.

After logical optimization, Galley’s physical optimizer produces a
single STC kernel for each aggregate. For

∑
𝑗 𝑃𝑝 𝑗𝜃 𝑗 , it would produce,

I1 = Dense()
FOR p=_

FOR j=_
I1[p] += P[p::iter,j::iter]*𝜃[j::lookup]

END
END

Contributions We claim the following contributions in this

work,

• We present Galley, a system for declarative sparse tensor

programming (Sec.4). Galley automatically translates high-

level sparse tensor programs to efficient imperative pro-

grams targeting a sparse tensor compiler.

• Galley supports a highly expressive language for sparse ten-

sor algebra with arbitrary algebraic operators, aggregates

within expressions, and multiple outputs.

• Galley is the first system to perform cost-based logical op-

timization, redistributing aggregates and reorganizing the

pointwise statements in the program. (Sec.5)

• Galley is the first system to perform cost-based physical

optimization to determine loop orders, tensor formats, and

merge algorithms for each dimension (Sec.6)

• We propose a minimal interface for sparsity estimation and

demonstrate it by implementing two estimators (Sec.7)

• We evaluate Galley on several workloads and show that it

is up to 100x faster than hand-optimized kernels for mixed

dense-sparse workloads and up to 100x faster than a state

of the art database for highly sparse workloads.

2 RELATEDWORK
Our work differs from other proposals on cost-based optimization

for tensor processing due to its targeting of STCs and its expressive

input language. SystemDS, formerly SystemML, is a system for end-

to-end machine learning over matrices and tabular data [7, 10, 11].

It primarily takes in linear algebra (LA) programs and targets a

combination of LA libraries and distributed computing via Spark.

Later work, SPORES, extended its logical optimizer to leverage

relational algebra when optimizing sum-product expressions[38].

Their core insight was that LA rewrites, which always match and

produce 0-2D expressions, are not sufficient. Optimal rewrites need

to pass through higher order intermediate expressions. Other work

translated sum-product expressions to SQL to leverage highly effi-

cient database execution engines[9]. These systems can perform

well for highly sparse inputs but struggle on mixed dense-sparse

workloads. Tensor relational algebra proposes a relational layer on

top of dense tensor algebra which provides a strong foundation for

automatically optimizing distributed dense tensor computations

[40]. In the compilers community, there have been attempts to au-

tomatically optimize sparse tensor kernels based on asymptotic

performance analyses[4, 16]. These systems each target a different

execution context and focus on different aspects of optimization.

Galley expands on this line of work by targeting a new execution

engine, proposing novel optimization techniques, and handling a

wider range of tensor programs.

3 BACKGROUND
3.1 Tensor Index Notation
The input to our system, Galley, is an extended version of Einsum

notation which we call tensor index notation. Traditional Einsum
notation allows for a single summation wrapped around a multipli-

cation operation. For instance, you can describe triangle counting

in a graph where 𝐸𝑖 𝑗 is the adjacency matrix with the following

Einsum statement,

𝑡 =
∑︁
𝑖 𝑗𝑘

𝐸𝑖 𝑗𝐸 𝑗𝑘𝐸𝑖𝑘

To capture the diverse workloads of tensor programming, we ad-

ditionally allow the use of arbitrary functions for both aggregates

and pointwise operations, nesting of aggregates and pointwise op-

erations, and defining multiple outputs. For example, a user could

perform logistic regression to predict entities that might be launder-

ing money. Then, they could filter this set based on whether they

occur in a triangle in the transactions graph. This is represented by

max𝑗𝑘 (𝐸𝑖 𝑗𝐸 𝑗𝑘𝐸𝑖𝑘 ) which is 1 if 𝑖 occurs in at least one triangle and

0 otherwise.

𝐿𝑖 = 𝜎 (
∑︁
𝑗

𝑋𝑖 𝑗𝜃 𝑗 ) > .5

𝑉𝑖 = 𝐿𝑖 ·max

𝑗𝑘
(𝐸𝑖 𝑗𝐸 𝑗𝑘𝐸𝑖𝑘 )

Tensor compilers like Halide, TACO, and Finch each build off of

similar core notations, adding additional structures like FOR-loops

to allow users to specify algorithmic choices[2, 23, 29]. Crucially,

the vast majority of operations in array programming frameworks

like Numpy can be expressed as operations in tensor index notation

So, while we focus on this notation in this paper, traditional tensor

workflows can be captured and optimized in this framework.

3.2 Sparse Tensor Compilers
In the last decade, the compilers community has developed a series

of sparse tensor compilers and shown that they can produce highly

efficient code for sparse tensor computations. We use this work as

our execution engine, so we take a moment here to explain their

important concepts.
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Figure 3: Galley Overview

Tensor Formats. There are many different ways to represent

sparse tensors, and the best approach depends on the data dis-

tribution and the workload. Work in this space has converged on

the fibertree abstraction for describing the space of formats[23, 36].

In this formalism, a tensor format is a nested data structure like the

one in Fig. 2. Each layer stores the non-fill (e.g. non-zero) indices in

a particular dimension, conditioned on the earlier dimensions, and

pointers to the next dimension’s non-fill indices. These layers can

be represented in any format that allows for iteration and lookup.

In this work, we consider sorted lists, hash tables, bytemaps, and

dense vectors, and they each have different performance charac-

teristics in terms of iteration, lookup, and memory footprint. For

example, compressed sparse row (CSR) is a common format for

sparse matrices. It stores the row dimension as dense vector where

each entry points to the set of non-zero columns for that particular

row. This set of non-zero columns is then stored in a sorted list,

i.e. in a compressed sparse format. Importantly, this abstraction

requires tensors to be accessed in the order that they are stored

(e.g. row-then-column in the case of CSR) which restricts the set of

valid loop orders as we describe next.

Loop Execution Model. The input to a Sparse Tensor Compiler

is a high-level domain specific language (DSL) which consists of

for-loops, in-place aggregates (e.g. + =), and arithmetic over in-

dexed tensors (e.g.𝐴[𝑖, 𝑗] ∗𝐵 [ 𝑗, 𝑘]). Crucially, the for-loops in these

expressions are not executed in a dense manner. Instead, these com-

pilers analyze the input formats and the algebraic properties of the

expression to determine which index combinations will produce

non-fill entries. In Fig. 1, because 0 is the annihilator of multipli-

cation (i.e. 𝑥 ∗ 0 = 0), only the values of 𝑖 which map to non-zero

entries in 𝑋 and 𝜃 need to be processed. All other index values will

return a zero. So, the outer loop is compiled to an iteration over

the intersection of the non-zero 𝑖 indices in 𝑋 and 𝜃 . Considering

the illustration in Fig. 2, we can see how this is simply co-iteration

over the top levels of their formats. The inner loop then iterates

over the 𝑗 indices which are non-zero in 𝑋 [𝑖, _], i.e. the non-zero
columns that occur in each row.

A. Input Program
Plan := Query... Query := (Name, Expr)
Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Agg | Map | Input | Alias
Input := Tensor[Idx...] Alias := Name[Idx...]

B. Logical Plan
Plan := Query... Query := (Name, Agg)
Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Map | Input | Alias
Input := Tensor[Idx...] Alias := Name[Idx...]

C. Physical Plan
Plan := Query... Query := (Name, Mat, Idx...)
Mat := (Format..., Idx..., Agg)
Agg := (Op, Idx..., Expr) Map := (Op, Expr...)
Expr := Map | Input | Alias
Input := Tns[PIdx...] Alias := Name[PIdx...]
PIdx := Idx::Protocol

Figure 4: Query Plan Dialects

Merge Algorithms. Once the compiler has determined which ten-

sors’ non-zero indices need to be merged to iterate over a particular

index, there are several algorithms it can apply. All formats allow

for both ordered iteration and lookup operations, so one algorithm

is to iterate through the indices of all inputs, similar to a merge

join. This is highly efficient per operation. However, it’s linear in

the total size of all inputs, even if one is much smaller than the

others. Another method is to iterate through one input’s level and

lookup that index in the others. In this work, we generally take

the latter approach, as described in Sec. 6.3. We refer to the mode

of an individual tensor (such as “iterate” or “lookup”) as an access
protocol and the overall strategy as a merge algorithm[3].
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4 GALLEY OVERVIEW
In this section, we provide a birds-eye view of Galley and show

how an input program is transformed, first to a logical plan then to

a physical plan then to an STC program, as illustrated in Fig. 3. The

first transformation from input program to logical plan is handled

by Galley’s logical optimizer, which extends the variable elimi-

nation framework to break the program down into a sequence

of aggregations. The second transformation, from logical plan to

physical plan, is performed by Galley’s physical optimizer, which

determines the loop order, tensor formats, and merge algorithms for

each logical query. These steps are each represented by a dialect of

our query plan language whose grammar is defined in Fig. 4. In the

following discussion, we use this grammar as a guide and show how

our example program, logistic regression, would be transformed

through these steps.

The input program dialect is equivalent to the tensor index no-

tation defined in Sec. 3.1. Pointwise functions like 𝐴𝑖 𝑗 ∗ 𝐵 𝑗𝑘 are

represented with Map. Aggregates like
∑
𝑖 are denoted by Agg. Each

assignment is a Query, and previous assignments are referenced

with an Alias. Our logistic regression example from Eq. (1) is de-

fined in this dialect as follows,

Query(P, Map(𝜎, Agg(+, j, Map(*, X[i,j], 𝜃[j]))))

Note that this notation is compatible with array APIs like Numpy

which don’t have named indices. Operations like ’matmul’ can

be automatically mapped into this language by generating index

names for inputs on the fly and renaming whenever operations

imply equality between indices. Also, note that aggregates can be

over multiple indices, e.g. Agg(+, i, j, k, ...).

4.1 Logical Plan
The first task in our optimization pipeline, handled by the logical

optimizer, is to break down the input program into a sequence

of simple aggregates. This is enforced by converting the input

program to a logical plan. This dialect is a restriction of the input

dialect where each query contains a single aggregate statement

that wraps an arbitrary combination of Map, Input, and Alias
statements. Intuitively, each logical query corresponds to a single

STC kernel that produces a single intermediate tensor, but it does

not specify details like loop orders and output formats. To perform

this conversion soundly, each input query must correspond to a

logical query which produces a semantically equivalent output. To

do this efficiently, it must minimize the total cost of all queries in

the logical plan.

As an example, our logistic regression program above can be

translated into the following logical plan,

Query(R, Agg(+, j, Map(*, X[i,j], 𝜃[j])))
Query(P, Agg(no-op, Map(𝜎, R[i])))

In this plan, the first query isolates the sum over the 𝑗 index while

the second query performs the remaining sigmoid operation on the

result. Note that the latter query uses a no-op aggregate to represent

an element-wise operation while conforming to the logical dialect.

4.2 Physical Plan
Given the logical plan, Galley’s physical optimizer determines the

implementation details needed to convert each logical query to a

STC kernel. Specifically, it defines the loop order of each compiled

kernel, the format of each output, and the merge algorithm for each

index. As above, this is expressed by converting the logical plan

to a physical plan described in the most verbose and constrained

dialect. To avoid out-of-order accesses, we require that the index

order of inputs and aliases are concordant with the loop order, so

the physical optimizer may insert additional queries to transpose

inputs. Therefore, each logical query corresponds to one or more
physical queries.

Using this language, we can precisely express the program from

Fig. 1 as follows where it means iterate and lu means lookup.

Query(R,Mat(dense,i,Agg(+,j,Map(*, X[i::it,j::it],
𝜃[j::lu]))), i, j)

Query(P,Mat(dense,i, Map(𝜎, P1[i::it])), i)

The first query computes the sum by iterating over the valid i indices

for X, iterating over the j indices in the intersection of X[i,_] and 𝜃 ,
and accumulating their product in a dense vector over the i indices.

The second query runs over this output and applies the sigmoid

function, returning the result as a dense vector.

4.3 Execution
Once Galley has generated a physical plan, the execution is very

simple. For each physical query, it first translates the expression

into an STC kernel definition and calls the STC to compile it. Then,

Galley injects the tensors referenced by inputs and aliases and

executes the kernel, storing the resulting tensor in a dictionary

by name. After all queries have been computed, we return the

tensors requested in the input program by looking them up in

this dictionary. In Sec. 8, we describe additional optimizations that

improve this workflow by doing just-in-time physical optimization

and common sub-expression elimination.

5 LOGICAL OPTIMIZER
Given the plan dialects above, we now describe the logical optimizer,

which takes in an input program and outputs a semantically equiv-

alent logical plan. Specifically, the logical optimizer converts each

query in the input program to a sequence of logical queries where

the last one produces the same output as the input query. There are

many valid plans, and the optimizer searches this space to identify

the cheapest one. In this section, we briefly define "cheapest" in this

context before outlining the complex space of valid logical plans

that are considered. Lastly, we explain the algorithms that we use

to perform this search.

5.1 Canonicalization & Pointwise Distributivity
The first step in our logical optimization is to canonicalize the input

program with a few simple rules that we apply exhaustively; 1)

merging nested Map operators 2) merging nested Agg operators

3) lifting Agg operators above Map operators when possible 4) re-

naming indices to ensure uniqueness. This compresses the input

program and makes our reasoning simpler later by ensuring that

operator boundaries are semantically meaningful.

Next, we consider whether to distribute point-wise expressions.

This may or may not result in a better plan because it both makes

operations more sparse and produces a larger expression.
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Example 3. Consider the following expression and its distributed
form,∑︁

𝑖 𝑗

(𝑋𝑖 𝑗 −𝑈𝑖𝑉𝑗 )2 =
∑︁
𝑖 𝑗

𝑋 2

𝑖 𝑗 − 2

∑︁
𝑖 𝑗

𝑋𝑖 𝑗𝑈𝑖𝑉𝑗 +
∑︁
𝑖

𝑈 2

𝑖

∑︁
𝑗

𝑉 2

𝑗

If all inputs are dense, the non-distributed form is more efficient be-
cause it results in fewer terms and has the same computational cost
per term. However, if 𝑋𝑖 𝑗 is sparse and 𝑈𝑖 ,𝑉𝑗 are dense, then the
distributed form could be more efficient because all terms can be com-
puted in time linear w.r.t. the sparsity of 𝑋𝑖 𝑗 . Note that the squaring
operation here is a point-wise function not a matrix multiplication.

Because apply pointwise distributivity can produce asymptotic

performance improvements, it cannot be ignored. To address this,

we perform logical optimization for both the distributed expression

and the original and use the cheaper one.

5.2 Cost Model
Overall, Galley’s logical optimizer attempts to minimize the time

required to execute the logical program. Because logical queries do

not correspond to concrete implementations, our logical cost model

aims to approximate this time without reference to the particular

implementation that the physical optimizer will eventually decide

on. This approximation considers on two factors: (1) the number

of non-fill entries in the output tensor and (2) the amount of com-

putation (i.e. the number of FLOPs) needed to produce the output.

The former corresponds to the size of the tensor represented by

Agg, 𝑛𝑛𝑧 (Agg), and the latter corresponds to the size of the tensor

represented by the MapExprwithin, 𝑛𝑛𝑧 (MapExpr). We assume that

the inputs are in memory, hence there is no cost for reading inputs

from disk. We then performed a simple regression to associate each

of these costs with a constant, and we add them to produce our

overall cost, 𝑐 ,

𝑐𝑜𝑠𝑡 ≈ 𝑎 ∗ 𝑛𝑛𝑧 (Agg) + 𝑏 ∗ 𝑛𝑛𝑧 (MapExpr)

To estimate 𝑛𝑛𝑧 (Agg) and 𝑛𝑛𝑧 (MapExpr), we introduce a sparsity
estimation framework in Sec. 7.

5.3 Variable Elimination
The core of our logical optimizer is the variable elimination (VE)

framework. With this view, a logical plan for an input query is

defined by an order on the indices being aggregated over, i.e. an

elimination order. Given this order, we can construct a valid logical

plan in the following way. Iterating through the elimination order

one index at a time, we (1) identify the minimal sub-query needed

to aggregate it out of the expression, (2) create a new logical query

representing the result of that sub-query, and (3) replace it in the

original query with an alias to the result. At the end of this pro-

cess, the remaining query no longer requires any aggregation and

therefore is itself a logical query.

Example 4. Consider optimizing the following matrix chain mul-
tiplication,

𝐸𝑖𝑚 =
∑︁
𝑗𝑘𝑙

𝐴𝑖 𝑗𝐵 𝑗𝑘𝐶𝑘𝑙𝐷𝑙𝑚

Figure 5: Annotated expression tree for logistic regression,
𝜎 (∑𝑗𝑝𝑐 (𝑆𝑖𝑝𝑐𝑃𝑝 𝑗𝜃 𝑗 + 𝑆𝑖𝑝𝑐𝐶𝑐 𝑗𝜃 𝑗 )

The elimination order 𝑗𝑘𝑙 corresponds to a left-to-right multiplication
strategy because eliminating 𝑗 from the expression first requires per-
forming the matrix multiplication between 𝐴 and 𝐵. Eliminating 𝑘
then requires multiplying that intermediate result with 𝐶 , and so on.
Concretely, this produces the following sequence of logical queries,

Query(I1, Agg(+, j, Map(*, A[i,j], B[j,k])))
Query(I2, Agg(+, k, Map(*, I1[i,k], C[k,l])))
Query(E, Agg(+, l, Map(*, I2[i,l], D[l,m])))

Similarly, the elimination order 𝑙𝑘 𝑗 corresponds to a right-to-left
strategy, and the order 𝑘𝑙 𝑗 to a middle-first strategy.

Unlike traditional VE over sum-product queries, we need to

handle complex trees of pointwise operators and aggregates. This

makes the identification of minimal sub-queries challenging as we

need to carefully examine the expression’s algebraic properties.

Given a strategy for this, the core problem of optimizing VE is to

search the space of elimination orders for the most efficient one.

In the worst case, this takes exponential time w.r.t. the number

of indices being aggregated over. In the following sections, we

describe 1) how we identify minimal sub-queries and 2) our search

algorithm for finding the optimal elimination order.

5.4 Identifying Minimal Sub-Queries
In this section, we show how to identify the minimal sub-queries

(MSQ) needed to aggregate over an index. In sum-product expres-

sions, the MSQ is just the sum over that index wrapping the product

of the tensors that are indexed by it. However, it’s not immediately

clear how to do this formore complex input programswhich include

an arbitrary mix of operators and aggregates. Fortunately, we show

that identifying the MSQ corresponds to a careful traversal down

the annotated expression tree, examining the algebraic properties of

the operation at each node to determine how to proceed.

Annotated Expression Tree The annotated expression tree

(AET) is constructed by examining the nested structure of Agg, Map,
Input, and Alias nodes in the input query. We start by removing

all Agg nodes and annotating their inner expressions with (Idx,
Op) for each index being aggregated over. We then replace all Map
nodes with their operator to get the final tree where every internal

node is a function and every leaf is either an Input or an Alias.
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Example 5. Fig. 5 shows the annotated expression tree for our
logistic regression example after distributing the multiplication as in
Eq. (2). The sigmoid function is the outermost layer of the expression,
so it appears at the top of the tree. The summations all occur just
inside the sigmoid function, so they annotate the addition operator, as
denoted by the red arrow. Then, each multiplication has three children
which are each indexed input tensors.

Given the AET, we can identify the minimal sub-queries for a

particular index by starting at the node where it’s annotated and

traversing downwards according to the algebraic properties of each

internal node. We now describe the traversal rules for functions

which are distributive, non-distributive, and commutative with

respect to the aggregation operator.

Distributive FunctionsWhen a function which distributes over

the aggregate is reached (e.g. multiplication which distributes over

summation), we examine how many of the children contain the

current index. Each child is a subtree of the AET, and it contains

the index iff it contains a tensor that is indexed by it. If one child

contains the index, we simply traverse down that child’s branch, i.e.

we factor the other children out of the aggregate. When multiple

children contain the index, we can’t go any further down the tree,

so we wrap the sub-tree rooted at that node in an aggregate and

return it as our MSQ. If the function is commutative and associative,

we are slightly more precise and only include the children which

contain the index.

Commutative, Identical FunctionsWhen the node’s function

is the same as the aggregate function and is commutative, we can

push the aggregate down to each child independently. For example,

if we have the expression

∑
𝑖 𝐴𝑖 + 𝐵𝑖 , we can transform it into∑

𝑖 𝐴𝑖 +
∑
𝑖 𝐵𝑖 . For all children which contain the index, we add

the result of traversing down its branch to the MSQ and replace it

with an alias to the result. If a child doesn’t contain the index, then

we need to account for the repeated application of the aggregate

function. To do this, we identify the function 𝑔(𝑥, 𝑛) = 𝑓 (𝑥, ..., 𝑥)
which represents the repeated application of our aggregate function

𝑓 . When 𝑓 is addition, 𝑔 is multiplication. When 𝑓 is idempotent,

𝑔(𝑥, 𝑛) = 𝑥 . We then wrap each non-index child in a Map with

function 𝑔 and the size of the index’s dimension as the second child.

Blocking Functions A function which doesn’t distribute or

commute with our aggregate function is called a blocking function.

Whenwe reach a blocking function in our traversal, we simply wrap

it in our aggregate and return the sub-tree as our MSQ. For example,

the expression

∑
𝑗

√︁
𝐴𝑖 𝑗𝐵 𝑗𝑘 cannot be rewritten as

√︃∑
𝑗 𝐴𝑖 𝑗

∑
𝑗 𝐵 𝑗𝑘

because
√
is a blocking function.

Discussion Galley builds on and extends the FAQ framework

for optimizing conjunctive queries with aggregation[22]. The FAQ

framework explored the optimization of queries with the following

form where each

⊕(𝑖 )
is either equal to or forms a semi-ring with

⊗,

(1)⊕
𝑣1

· · ·
(𝑘 )⊕
𝑣𝑘

𝐹 1𝑉1
⊗ · · · ⊗ 𝐹𝑘𝑉𝑘

While this captures many important problems, it lacks the flexibility

needed to support a general tensor processing system. For example,

consider a slightly modified version of the SDDMM kernel,∑︁
𝑗

𝐴𝑖𝑘 (𝐵𝑖 𝑗 +𝐶 + 𝑗𝑘)

This expression is not an FAQ query because it mixes addition

and multiplication within the pointwise expression. Similarly, our

logistic regression example, 𝜎 (∑𝑗 𝑋𝑖 𝑗𝜃 𝑗 ) cannot be expressed as

an FAQ because the aggregate occurs within the 𝜎 . Galley’s logi-

cal optimizer extends this framework by accommodating arbitrary

pointwise function composition and arbitrary placement of aggre-

gates within expressions.

5.5 Restricted Elimination Orders
Lastly, before we can search for the optimal elimination order, we

need to define the space of valid elimination orders. Depending

on the structure of the input, the order in which indices can be

eliminated might be restricted. This is due to two issues: (1) non-

commutative aggregates and (2) aggregate placement. The former

is when an aggregate wraps another aggregate which it doesn’t

commute with. For example, if the expression is max𝑖
∑
𝑗 𝐴𝑖 𝑗 , we

have to perform the summation before handling the maximum

because max and

∑
do not commute. The latter issue arises when

an aggregate wraps another aggregate but cannot reach it via the

traversal described above, e.g.

∑
𝑖

√︃∑
𝑗 𝐴𝑖 𝑗 . In this case, the inner

aggregate must be performed first. Collectively, these restrictions

form a partial ordering on the index variables which needs to be

respected when we enumerate elimination orders.

5.6 Search Algorithm
We have now simplified the complicated issue of high level op-

timization to the discrete problem of choosing an optimal order

on the aggregated index variables. So, in this section, we present

two algorithms for searching for that optimal order using the tools

described above.

Greedy The greedy approach simply chooses the cheapest index

to aggregate at each point. It does this by finding the minimal

sub-query for each index and computing its cost. For the cheapest

index, it’s minimal sub-query is removed from the expression and

appended to the logical plan, then it is replaced in the remaining

query with an alias to the result. This continues until no aggregates

remain in the expression.

Branch-and-BoundThe branch-and-bound approach computes

the optimal variable order and is broken into two steps. The first

step uses the greedy algorithm to produce an upper bound on the

cost of the overall plan. The second step performs a dynamic pro-

gramming algorithm. In this algorithm, the keys of the DP table are

unordered sets of indices, and the values are a tuple of ordered lists

of indices, remaining queries, and costs. We initialize the table with

the empty set and a cost of zero. At each step, we iterate through the

entries of the DP table and attempt to aggregate out another index.

We use the cost bound from the first step to prune entries from

the DP table whose cost is greater than the bound which is valid

because costs monotonically increase as more indices are added to

the set. At the end, we return the index order associated with the

full set of indices.
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6 PHYSICAL OPTIMIZER
Each query in the logical dialect roughly corresponds to a single

loop nest and materialized intermediate. However, there are still

several decisions which need to be made about the way the kernel

is computed; (1) the loop order over the indices, (2) the format (i.e.

layout) of the result, and (3) the protocol (i.e. search algorithm) for

accessing each index of each input. The physical optimizer makes

these decisions.

6.1 Loop Order
The loop order of a tensor kernel determines which order the in-

puts are accessed in. A good order will result in early pruning of

iterations due to early intersection of sparse inputs. Intuitively, this

is similar to selecting a variable order for a worst-case optimal join

algorithm.

Cost Model. The cost of a loop order is equal to how many itera-

tions each level of the loop nest incurs.

Example 6. Consider matrix chain multiplication over three sparse
matrices, 𝐴, 𝐵, and 𝐶 .

𝐷 [𝑖𝑙] =
∑︁
𝑗𝑘

𝐴[𝑖 𝑗] ∗ 𝐵 [ 𝑗𝑘] ∗𝐶 [𝑘𝑙] (3)

Suppose that 𝐴 has only a single non-zero entry and that 𝐵 and 𝐶
have 5 non-zero entries per column and per row. Then, the loop order
𝑖 𝑗𝑘𝑙 is significantly more efficient than 𝑙𝑘 𝑗𝑖 . In the former, the first
two loops, over 𝑖 and 𝑗 , only incur a single iteration because they are
bounded by the size of 𝐴. The third and fourth occur 5 and 52 times
respectively because there are only 5 non-zero 𝑘’s per 𝑗 in 𝐵 and 5

non-zero 𝑙 ’s per 𝑘 in 𝐶 . In the latter, the first two loops iterate over
the full matrix𝐶 despite most of those iterations not leading to useful
computation.

The last piece of our cost model is the cost of transposition. If an

input’s index order is not concordant with the loop order, it must

be transposed before the query can be executed. This imposes a

cost that is linear in that input’s size.

Optimization Algorithm. To optimize the loop order, we combine

this cost model with a branch-and-bound, dynamic programming

algorithm . In the first pass, it selects the cheapest loop index at

each step until reaching a full loop order. This produces an upper

bound on the optimal execution cost which we use to prune loop

orders in the second step. This step applies a dynamic programming

algorithm. Taking inspiration from Selinger’s algorithm for join

ordering, each key in the DP table is a set of index variables and a

set of inputs. The former represent the loops that have been iterated

so far, and the latter represents the inputs which will need to be

transposed based on the optimal prefix.

6.2 Intermediate Formats
Once the loop order has been determined, we select the optimal

format for each query’s output. Because we operate within the

fibertree abstraction, this means that we select a format for each

index of the output (e.g. dense vector, hash table, etc.). There are

two factors which affect this decision: (1) the kind of writes being

performed (sequential vs random) (2) the sparsity of the resulting

tensor. The former is important because many formats (e.g. sorted

list formats) only allow for sequential construction. This means that

they can only be applied if the indices of the output form a prefix

of the loop order. The latter factor balances the fact that denser

formats tend to be more efficient due to their memory locality and

simplicity while sparser formats are asymptotically better when

dealing with significantly sparse outputs. To describe this trade-off,

we hand selected sparsity cutoffs between fully sparse, bytemap,

and fully dense formats. To determine a particular output index’s

format, we first determine the sparsity at this index level and use

our cutoffs to determine which category of formats to consider.

Then, we check whether we are performing sequential or random

writes and select the most efficient format that supports our write

pattern.

6.3 Merge Algorithms
The final decision for the physical optimizer to make is the algo-

rithm it will use to perform each loop’s intersection. While there

are some more complex strategies, we adopt a minimal approach

and select a single input to iterate over for each loop. The remaining

inputs are then probed into. We make this selection by estimating

the number of non-zero indices that each input has, conditioned on

the indices in the outer loops. This is similar to the approach taken

in [39] for optimizing WCOJ.

7 SPARSITY ESTIMATION
In this section, we describe how our system performs the spar-

sity estimation that guides our logical and physical optimizers. We

start by discussing the subtle correspondence between sparsity

estimation and cardinality estimation. Then, we describe a minimal

interface for sparsity estimation inspired by this correspondence.

Lastly, we discuss two implementation of this framework; the uni-

form estimator and the chain bound.

7.1 Sparsity & Cardinality Estimation
Sparsity estimation is highly related to cardinality estimation in

databases. However, translating methods for the latter to the former

requires analyzing the algebraic properties of our tensor programs.

For example, let 𝐴𝑖 𝑗 and 𝐵 𝑗𝑘 be sparse matrices with a fill value of

0 and 𝑅𝐴 (𝐼 , 𝐽 ) and 𝑅𝐵 (𝐽 , 𝐾) be relations which store the indices of

their non-zero entries. Suppose we’re performing matrix multipli-

cation,

𝐶𝑖 𝑗𝑘 = 𝐴𝑖 𝑗𝐵 𝑗𝑘

Then, the number of non-zero values in 𝐶 is precisely equal to the

size of the following conjunctive query,

𝑛𝑛𝑧 (𝐶) = |𝑅𝐴 (𝐼 , 𝐽 ) ⊲⊳ 𝑅𝐵 (𝐽 , 𝐾) |
The correspondence is due to the fact that 0 is the annhilator of

multiplication (i.e. 𝑥 ∗ 0 = 0∀𝑥), so any non-zero entry 𝑖 𝑗𝑘 in the

output must correspond to a non-zero 𝑖 𝑗 in 𝐴 and a non-zero 𝑗𝑘 in

𝐵. Now, consider the following instead,

𝐶𝑖 𝑗𝑘 = 𝐴𝑖 𝑗 + 𝐵 𝑗𝑘
In this case, a nonzero 𝑖 𝑗𝑘 in the output can result from a non-

zero 𝑖 𝑗 in 𝐴 or a non-zero 𝑗𝑘 in 𝐵. In traditional relational algebra
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where relations are over infinite domains, this kind of disjunction

would result in an infinite relation. However, tensors have finite

dimensions, so we can introduce relations that represent the fi-

nite domains of each index, e.g. 𝐷𝑖 = {1, ..., 𝑛𝑖 }. This allows us to
represent the index relation of the output as,

𝑛𝑛𝑧 (𝐶) = | (𝑅𝐴 (𝐼 , 𝐽 ) ⊲⊳ 𝐷𝑘 (𝐾)) ∪ (𝐷𝑖 (𝐼 ) ⊲⊳ 𝑅𝐵 (𝐽 , 𝐾)) |

Lastly, we can translate aggregations to the tensor setting as pro-

jection operations. If we have the following statement,

𝐶𝑖𝑘 =
∑︁
𝑗

𝐴𝑖 𝑗𝑘

We can express the non-zeros entries of 𝐶 as,

𝑛𝑛𝑧 (𝐶) = |𝜋𝐼 ,𝐾 (𝑅𝐴 (𝐼 , 𝐽 , 𝐾)) |

7.2 The Sparsity Statistics Interface
We use our statistics interface to annotate an expression with stats

objects at every node of the AST in a bottom-up fashion. Each stats

object then represents the sparsity patterns of the intermediate

tensor output from that node. Surprisingly, to support sparsity

estimation over the varied workloads and arbitrary operators of

tensor algebra, we only need to implement a few core functions; 1)

A constructor which produces statistics from a materialized tensor.

This produces statistics for Input and Alias nodes. 2) A function

for annihilating Map nodes (i.e. those whose children’s fill values
are the annihilator of its pointwise function) which merges the

children’s statistics. 3) A function for non-annihilating Map nodes
which merges the children’s statistics. 4) A function for Agg which

adjusts the input’s statistics to reflect an aggregation over some set

of indices. 5) An estimation procedure that estimates the number

of non-fill entries based on statistics about a tensor.

7.3 Supported Sparsity Estimators
7.3.1 Uniform Estimator. The simplest statistic that can be kept

about a tensor is the number of non-fill (e.g. non-zero) entries.

The uniform estimator uses only this statistic and relies on the

assumption that these entries are uniformly distributed across the

dimension space. This corresponds to System-R’s cardinality estima-

tor with the added assumption that the size of the index attribute’s

active domain is equal to the size of the dimension [30].

Constructor. Given a tensor 𝐴𝑖1,...,𝑖𝑘 ∈ R𝑛𝑖1×...×𝑛𝑖𝑘 , we simply

count the non-fill values in the tensor, 𝑛𝑛𝑧 (𝐴), and note the dimen-

sion sizes 𝑛𝑖1 , . . . , 𝑛𝑖𝑘 .

Map (Annihilating). To handle an annihilating pointwise oper-

ation, we calculate the probability that a point in the output was

non-fill in all inputs, then multiply this with the dimension space of

the output. For a set of inputs 𝐴
(1)
𝐼1

. . . 𝐴
(𝑙 )
𝐼𝑙

and output 𝐶𝐼𝐶 where

each 𝐼 𝑗 is a set of indices, this probability is

𝑛𝑛𝑧 (𝐶) ≈ ©­«
∏
𝑖∈𝐼𝐶

𝑛𝑖
ª®¬ · ©­«

∏
𝑗

𝑛𝑛𝑧 (𝐴 𝑗 )∏
𝑖∈𝐼 𝑗 𝑛𝑖

ª®¬
Map (Non-Annihilating). To handle an non-annihilating point-

wise operation, we calculate the probability that an entry in the

output was fill in all inputs. Then, we take the compliment to get

the probability that it was non-fill in all inputs and multiply this

with the output dimension space. Using the notation from above,

𝑛𝑛𝑧 (𝐶) ≈ ©­«
∏
𝑖∈𝐼𝐶

𝑛𝑖
ª®¬ · ©­«1 −

∏
𝑗

(
1 −

𝑛𝑛𝑧 (𝐴 𝑗 )∏
𝑖∈𝐼 𝑗 𝑛𝑖

)ª®¬
Aggregate. Given an input tensor 𝐴𝐼 which we are aggregating

over the indices 𝐼 ′, we compute the probability that an output entry

is non-fill by calculating the probability that at least one entry in

the subspace of the input tensor wasn’t fill.

𝑛𝑛𝑧 (𝐶) ≈ ©­«
∏
𝑖∈𝐼\𝐼 ′

𝑛𝑖
ª®¬ ·

(
1 −

(
1 − 𝑛𝑛𝑧 (𝐴𝐼 )∏

𝑖∈𝐼 𝑛𝑖

)∏
𝑖∈𝐼 ′ 𝑛𝑖

)
Estimate. The estimation function simply returns the cardinality

statistic stored about the current tensor.

7.3.2 Degree Statistics & The Chain Bound. We keep degree sta-

tistics as the default in Galley, and we use them to compute upper

bounds on the number of non-fill entries in intermediate expres-

sions. A degree statistic, denoted 𝐷𝐴 (𝑋 |𝑌 ), stores the maximum

number of non-fill entries in the 𝑋 dimensions conditioned on the

𝑌 dimensions for a tensor 𝐴. For example, if you have a matrix

𝐴𝑖 𝑗 , then 𝐷𝐴 (𝑖 | 𝑗) is the maximum number of non-fill entries per

column, and 𝐷𝐴 (𝑖 𝑗 |∅) is the total number of non-fill entries in the

matrix. This approach follows work in cardinality bounding which

has been shown to produce efficient query plans in the relational

setting [12, 15, 19].

Constructor. We first compute the boolean tensor representing

the input’s sparsity pattern. Then, to calculate each degree statistic,

we sum over the 𝑋 dimensions and take the maximum over the 𝑌

dimensions. The set of degree statistics for a tensor 𝐴𝐼 is denoted

D𝐴𝐼

Map (Annihilating). Annihilating map operations function as

conjunctive queries with respect to the sparsity patterns of the

inputs. Therefore, any degree statistics that are valid for an input

are also valid about the output, so we compute the statistics about

the output, 𝐶 , from the inputs 𝐴
(1)
𝐼1
, . . . , 𝐴

(𝑘 )
𝐼𝑘

by a union,

D𝐶 =
⋃
𝑗

𝐴
( 𝑗 )
𝐼 𝑗

Map (Non-Annihilating). In this case, we need to be more careful

to ensure that we maintain our upper bounds. First, we extend the

degree constraints from each input to cover the full set of indices.

For example, if we have 𝐷𝐶𝑋 (𝑖 | 𝑗) and want to extend it to the

dimension 𝑘 , then we compute 𝐷𝑋 (𝑖𝑘 | 𝑗) = 𝐷𝐶 (𝑖 | 𝑗) ∗ 𝑛𝑘 . Then,
we compute degree statistics about the output, 𝐶 , from the inputs

𝐴
(1)
𝐼1
, . . . , 𝐴

(𝑘 )
𝐼𝑘

by addition,

𝐷𝐶 (𝑋 |𝑌 ) =
∑︁
𝑗

𝐷𝐴( 𝑗 ) (𝑋 |𝑌 )

Estimator. We calculate our upper bound (eq. perform sparsity

estimation) using the breadth-first search approach described in

[13]. Intuitively, each set of indices forms a node in the graph, and

each degree constraint is a weighted edge from 𝑌 to 𝑋 . Our search

begins with the empty set, then we use breadth first search to find
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the shortest weighted path to the full set of indices 𝐼 . The product

of the weights along this path bound the number of non-zeros in

the result.

8 ADDITIONAL OPTIMIZATIONS
In this section, we outline a few additional techniques we apply to

improve the optimization and execution of tensor programs.

8.1 Just-In-Time Physical Optimization
When optimizing a large program, estimates of sparsity become

less reliable because they require more steps of inference on top of

grounded inputs. This poses a challenge for the physical optimizer

as it estimates the cost of different loop orders, formats, and access

protocols. To ameliorate this, Galley performs a very simple form of

adaptive optimization by waiting to perform physical optimization

on each logical query until all of its aliases have already been

executed. This allows it to calculate the size of prior intermediate

results and update the relevant statistics before performing physical

optimization. This makes that cost estimates in that optimization

more accurate and produces a better physical plan.

8.2 Common Sub-Expression Elimination
We take a straightforward approach to avoiding redundant compu-

tation. Before executing each physical query, we first canonicalize

the right hand side, hash it, and compute its hash value. We use this

to check a cache to see if it has been executed already. If so, we im-

mediately return the value from the cache rather than re-executing

the query. Similarly, after computing a query, we store the result in

this cache for later reuse.

9 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of our optimizer on a

variety of workloads: (1) machine learning algorithms, (2) subgraph

counting, and (3) breadth-first search. Compared to hand-optimized

solutions and alternative approaches, Galley is highly computa-

tionally efficient while only requiring a concise, declarative input

program from the user. Overall, we show that Galley:

• Performs logical optimizations resulting in up to 100×
faster ML algorithms over joins as compared to hand opti-

mized implementations

• Has a mean optimization time of less than 0.15 seconds for

all subgraph counting workloads with up to 100× faster

median execution than DuckDB

• Selects optimal tensor formats for intermediates, beating

both the dense and sparse formats for 3/5 graphs

Experimental Setup. These experiments are run on a server with

an AMD EPYC 7443P Processor and 256 GB of memory. We imple-

mented Galley in the programming language Julia, and the code is

available at https://github.com/kylebd99/Galley. We used the sparse

tensor compiler Finch for execution, and all methods are executed

using a single thread. Unless otherwise stated, Galley uses the chain

bound described in Sec. 7.3.2 for sparsity estimation. Experiments

for all methods are run three times and the minimum execution

time is reported. This removes the compilation overhead which

we address separately in Fig. 9.

9.1 Machine Learning Algorithms
To explore end-to-end program optimization, we experiment with

simple machine learning algorithms over joins, represented en-

tirely in tensor algebra. For this, we use the TPC-H benchmark

and consider two join queries, a star query and a self-join query.

First, we perform a star join over the line items table to bring to-

gether features about suppliers, parts, orders, and customers. This

is expressed as follows where 𝐿, 𝑆, 𝑃,𝑂, and 𝐶 are tensors repre-

senting the lineitems, suppliers, parts, orders, and customers tables,

respectively.

𝑋𝑖 𝑗 =
∑︁
𝑠𝑝𝑜𝑐

𝐿𝑖𝑠𝑝𝑜𝑐 (𝑆𝑠 𝑗 + 𝑃𝑝 𝑗 +𝑂𝑜 𝑗 +𝐶𝑐 𝑗 )

The non-zero values in 𝑆, 𝑃,𝑂 and 𝐶 are disjoint along the 𝑗 axis,

so the addition in this expression serves to concatenate features

from each source, resulting in 139 features after one-hot encoding

categorical features. The self-join query compares line items for

the same part based on part and supplier features. In this case, the

feature data is a 3d tensor because the data points are keyed by

pairs of line items.

𝑋𝑖1𝑖2 𝑗 =
∑︁
𝑠1𝑠2𝑝

𝐿𝑖1𝑠1𝑝𝐿𝑖2𝑠2𝑝 (𝑆𝑠1 𝑗 + 𝑆𝑠2 𝑗 + 𝑃𝑝 𝑗 )

Given these definitions, we consider a range of ML algorithms; 1)

linear regression inference 2) logistic regression inference 3) co-

variance matrix calculation and 4) neural network inference. As

a comparison point, we also implement two versions of each of

these using the Finch compiler. The dense version uses a fully dense

matrix to represent the feature matrix whereas the sparse version

uses a sparse level for the features to compress the one-hot encoded

features. Fig. 6 shows that Galley is 2 − 100× faster for all but one

experiment. This performance improvement is derived from Galley

pushing the computation into the definition of 𝑋 . For example,

linear regression inference is fundamentally a matrix-vector multi-

plication, and Galley pushes the vector multiplication all the way

down to the feature matrices 𝑆, 𝑃,𝑂, and 𝐶 . Note that we do not

provide a dense implementation for the self-join query because it

runs out of memory due to the highly sparse 𝑖1, 𝑖2 dimensions.

9.2 Subgraph Counting
To test Galley’s performance on large, sparse problems, we imple-

ment a few common sub-graph counting benchmarks. The conver-

sion from sub-graph counting to sparse tensor algebra is straight-

forward. Suppose you are counting the occurrences of 𝐻 (𝑉 , 𝐸) in a

data graph 𝐺 with adjacency matrix𝑀 , then we can represent the

count as,

𝑐 =
∑︁
𝑣𝑖 ∈𝑉

∏
(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸

𝑀𝑣𝑖 𝑣𝑗

To handle vertex labels, we add sparse binary vector factors for

each labeled vertex. We use subgraph workloads from the G-Care

benchmark and the paper "In-Memory Subgraph: an In-Depth

Study"[26, 33]. We restrict the latter benchmark to query graphs

with up to 8 vertices, hence the "_lite" suffix . Because this is a

relational workload, we compare with DuckDB, a modern OLAP

database [28]. To tease apart the impact of logical optimization from

physical optimization and our use of Finch, we provide a version

https://github.com/kylebd99/Galley
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Figure 6: Machine Learning Algorithms Over Joins

Figure 7: Subgraph Counting Execution Time

Figure 8: Subgraph Counting Optimization Time

of Galley that executes each logical query with a SQL query run on

DuckDB. Lastly, we provide results for the greedy logical optimizer

as well.

In Fig. 7, we see median execution times which are up to 100×
lower when comparing Galley to DuckDB. When using Galley’s

physical optimizer with Finch as opposed to using DuckDB as an

execution engine, we still see up to 10× lower median execution

Figure 9: Subgraph Counting Compilation Time

time. The former shows the benefit of Galley’s logical optimizer and

the variable elimination framework. The latter demonstrates the

benefits of using STCs which enable a wide range of formats and

produce highly efficient code. Further, DuckDB hits the 300 second

timeout on 196 out of 400 queries in the youtube_lite benchmark.

This is reduced to 5 and 18 timeouts when using Galley with a

DuckDB and Finch execution engine, respectively. The greedy opti-

mizer performs similarly to the exact optimizer on these workloads

with the latter providing improvements on the slowest queries.

Fig. 8 shows the mean optimization time for each of the methods

on each of the workloads. Galley has a mean optimization time of

less than .15 seconds across all workloads, approaching the time

taken by the highly efficient DuckDB optimizer.

Lastly, because it performs compilation using Finch at runtime,

Galley incurs a compilation latency when it first requests each ten-

sor kernel implementation. Fortunately, these kernels are cached

automatically by Finch, reducing this cost when workloads repeat-

edly use similar kernels. We show the mean compilation time for

each subgraph workload in Fig. 9. On the simpler workloads which

often reuse kernels, this cost is minimal. However, the more com-

plex workloads both reuse kernels less and require compiling more

complex kernels, significantly increasing compilation time. This
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Figure 10: BFS Runtime

suggests a need for faster STC compilation or the use of an inter-

preted engine for complex queries.

9.3 Breadth First Search
To demonstrate the importance of selecting optimal formats, we

implement a simple push-based breadth first search algorithm us-

ing Galley and different hand coded Finch implementations. Both

systems are provided with a single iteration at a time and the total

execution time across all iterations is reported. This means that

the core optimization question is how to represent the vector of

visited vertices and the vector of frontier vertices. The former grows

monotonically over the course of the algorithm while the number

of non-zeros in the latter forms a curve, peaking in the middle iter-

ations. We provide two implementations of Finch 1) using a sparse

vector for both intermediates and 2) using a dense vector for both

intermediates. Fig. 10 shows that Galley is faster than both dense

and sparse approaches for 3 of the 5 graphs and is competitive for

all graphs. Note that this includes the optimization time for Galley.

10 CONCLUSION & LIMITATIONS
In this paper, we presented Galley, our system for declarative sparse

tensor programming. We described and then demonstrated how it

optimizes high-level program structure with its logical optimizer

and how it lowers that program to an efficient implementation

with its physical optimizer. These decisions are guided by sparsity

estimates of intermediate expressions, and we show that these esti-

mates can be computed for arbitrary tensor algebra programs by

implementing a minimal 5-function interface. Lastly, we present an

experimental evaluation of this work on ML algorithms over struc-

tured feature data, sub-graph counting, and breadth-first search.

There are a few optimizations which we are excited to bring to

Galley in the future. Currently, it does not support complex loop

structures (e.g. a single outer FOR loop which wraps multiple inner

FOR loops) or parallelism. Both of these areas can benefit from cost-

based optimization, and we’re excited to explore them in future

work. Similarly, we do not consider memory constraints during the

optimization process, but our focus on cardinality bounds provides

an exciting avenue for approaching this in the future.
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