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Abstract
Symmetric and sparse tensors arise naturally in many do-
mains including linear algebra, statistics, physics, chemistry,
and graph theory. Symmetric tensors are equal to their trans-
poses, so in the 𝑛-dimensional case we can save up to a
factor of 𝑛! by avoiding redundant operations. Sparse ten-
sors, on the other hand, are mostly zero, and we can save
asymptotically by processing only nonzeros. Unfortunately,
specializing for both symmetry and sparsity at the same
time is uniquely challenging. Optimizing for symmetry re-
quires consideration of 𝑛! transpositions of a triangular ker-
nel, which can be complex and error prone. Considering mul-
tiple transposed iteration orders and triangular loop bounds
also complicates iteration through intricate sparse tensor for-
mats. Additionally, since each combination of symmetry and
sparse tensor formats requires a specialized implementation,
this leads to a combinatorial number of cases. A compiler is
needed, but existing compilers cannot take advantage of both
symmetry and sparsity within the same kernel. In this paper,
we describe the first compiler which can automatically gen-
erate symmetry-aware code for sparse or structured tensor
kernels. We introduce a taxonomy for symmetry in tensor
kernels, and show how to target each kind of symmetry. Our
implementation demonstrates significant speedups ranging
from 1.36x for SSYMV to 30.4x for a 5-dimensional MTTKRP
over the non-symmetric state of the art.

CCS Concepts: • Mathematics of computing → Math-
ematical software; • Software and its engineering →
Compilers; • Computing methodologies → Symbolic
and algebraic manipulation.
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1 Introduction
A symmetric tensor is a tensor that is invariant under a
permutation of its indices. Tensors are often naturally sym-
metric because of the physical and chemical properties of
substances and matter which produce symmetric interac-
tions, structures, or reactions. Additionally, symmetry can
also be induced as a mathematical consequence of how we
use tensor operations (e.g. 𝐴𝑇𝐴).
Real world tensors can also be sparse, meaning they are

mostly zero or some other fill value. Special formats have
been proposed to only store nonzeros and several systems,
such as GraphBLAS [18], TACO [19], or Finch [4] have been
developed to efficiently perform operations on sparse tensors,
but none of them can handle symmetry automatically.

There are wide-ranging applications of symmetric sparse
tensors, from mathematical optimization to scientific com-
puting. In linear algebra, the hat matrix in linear regression
and the Q matrix that is a result of QR factorization are both
symmetric [16]. In statistics, matrices expressing covariance
and other similarly commutative calculations are naturally
symmetric [28]. In physics and chemistry computations, the
properties of quantum tensor networks and computational
fluid dynamics give way to multi-dimensional symmetry
[17, 24]. In graph theory, adjacency matrices of undirected
graphs, used in algorithms like single-source shortest path
and to find connected components, are also symmetric [30].

Table 1. Supported features:  = Yes, G#= Partially. 1 = Only
static sizes, 2 = Only one sparse tensor at a time, 3 = Only
symbolic patterns, 4 = Only contractions.
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Supports Dense Tensors    G#1   
Supports Sparse Tensors  G#2 G#1,3 G#3  
Supports Structured Tensors G#1   

Supports General Einsums G#4 G#4    

Optimizes Redundant Reads   
Optimizes Redundant Operations       
Optimizes Redundant Storage       

Optimizing for symmetry and sparsity at once is uniquely
challenging. Symmetric optimizations require that we con-
sider all combinatorial loop reorderings of the kernel and
restrict iteration to a triangle, which can be complex and
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error prone. Sparse optimizations require reformatting the
data to store and process only nonzeros. Symmetry is a prop-
erty defined on the coordinates of the tensor, and sparse
formats obfuscate the relationship between tensor coordi-
nates and where elements are stored in memory. Iterators
over sparse tensor formats are often a performance bottle-
neck, and are especially sensitive to changes in loop ordering
and loop bounds [6]. Additionally, since each combination
of symmetry and sparse tensor formats requires a special-
ized implementation, this leads to a combinatorial number
of cases, hand-writing solutions is not feasible in the general
case. Libraries such as MKL or CuBLAS only support a small
subsets of symmetric sparse matrix kernels [1, 2].

A compiler approach is necessary. Though several compil-
ers have been developed to handle symmetric tensors, none
of them apply to sparse tensors, and vice versa. Compilers
like STUR [15] and Cyclops [33] and sBLACs [35] all optimize
for symmetric tensors, but STUR and sBLACs cannot handle
unstructured sparse tensors and Cyclops cannot handle more
than one sparse tensor at a time. These compilers accelerate
symmetric kernels by avoiding redundant computation and
storage, but cannot avoid redundant memory operations. In
some kernels, like symmetric sparse matrix-vector multiply,
we can optimize memory bandwidth by restricting iteration
to the upper triangle and performing all necessary updates
to the output tensor in one pass.

We aim to fill the gap by presenting a granular approach
to identify and exploit symmetry in sparse tensor kernels.
Our specific contributions include:

1. To the best of our knowledge, SySTeC is the first sys-
tem to automatically generate code for symmetric and
sparse or otherwise structured (Triangular, Banded,
Run-Length-Encoded) tensor operations.

2. A taxonomy of symmetry in tensor kernels, and strate-
gies to utilize each kind of symmetry. We introduce
the concepts of visible and invisible input and out-
put symmetries. Capitalizing on these saves memory
bandwidth, storage, and compute by reusing reads and
writes to symmetric input and filtering redundant stor-
age and computations.

3. We show how to extend traditional compiler optimiza-
tions to take advantage of symmetry, as well as intro-
duce new compiler optimizations, such as simplicial
lookup tables and diagonal splitting. Our compiler uses
term rewriting to optimize redundancies, and is easily
extensible to general operators beyond + and ∗.

4. We implement our compiler and evaluate it on several
common tensor kernels, demonstrating speedups from
1.36x for SSYMV to 30.4x for a 5-dimensional MTTKRP
with the symmetric code generated by the compiler
over the naive implementation of these kernels.

2 Background
In this section, we introduce the terminology and syntax
that will be used throughout the rest of the paper.

2.1 Symmetric Tensors
A matrix 𝑀 is symmetric if 𝑀 [𝑖1, 𝑖2] = 𝑀 [𝑖2, 𝑖1]—i.e. the
entries at permutations of the indices are equivalent. We can
generalize this definition for tensors [12].

Definition 2.1 (Symmetry). Let T be an 𝑛-dimensional ten-
sor. T is symmetric if for all permutations 𝜎 of {1, ..., 𝑛},

𝑇 [𝑖1, ..., 𝑖𝑛] = 𝑇 [𝑖𝜎 (1) , ..., 𝑖𝜎 (𝑛) ] .

In the case of matrices, symmetry is binary: a matrix is
either symmetric or it is not. However, when dealing with
higher-order tensors, this definition can be expanded with
the notion of partial symmetry. A partition Π of a set A is
a collection of non-empty, pairwise disjoint subsets, which
we will refer to as parts, of A, such that each element of A
belongs to exactly one subset within the collection [27]. We
denote 𝜋𝑖 to be the 𝑖𝑡ℎ part of Π. We define partial symmetry
relative to a chosen partition [29].

Definition 2.2 (Partial Symmetry). Let 𝑇 be an
𝑛-dimensional tensor, and let Π be a partition of {1, ..., 𝑛}.
Then 𝑇 is partially symmetric if

𝑇 [𝑖1, ..., 𝑖𝑛] = 𝑇 [𝑖𝜎 (1) , ..., 𝑖𝜎 (𝑛) ]
for all permutations 𝜎 of {1, ..., 𝑛} which only permute ele-
ments within their parts in Π.
Then, we can denote that 𝑇 has Π symmetry.

Since the upper and lower triangles of a symmetric matrix
are equal, our framework restricts our computations to one of
the triangles to avoid redundant operations. We refer to the
triangle that we choose to compute as the canonical triangle
of the tensor. We choose the upper triangle in this work.

Definition 2.3 (Canonical). Let tensor𝑇 [𝑖1, ..., 𝑖𝑛] have sym-
metry Π𝑇 . Coordinates [𝑖1, ..., 𝑖𝑛] are canonical if 𝑖𝑝 ≤ 𝑖𝑞 for
any 𝑝 < 𝑞 with 𝑖𝑝 and 𝑖𝑞 in the same part of Π𝑇 . Otherwise,
the coordinates are non-canonical. The canonical triangle of a
tensor consists of all the canonical coordinates in the tensor.

Although computations in the triangles of a tensor are re-
peated, computations on diagonals are not, and so diagonals
must often be handled separately.

Definition 2.4 (Diagonal). A diagonal of a tensor𝑇 consists
of all coordinates [𝑖1, ..., 𝑖𝑛] where the indices in a subset 𝐷
of {𝑖1, ..., 𝑖𝑛} where |𝐷 | > 1 are equal.

2.2 Sparse and Structured Tensor Programming
Wewill be using the program syntax and formats from Finch,
a Julia-to-Julia compiler designed for optimizing loop nests
over sparse or structured (Triangular, Banded, Run-Length-
Encoded) multidimensional arrays [4]. Finch supports a wide
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range of sparse and structured storage formats, as well as the
control flow necessary to implement and execute symmetric
kernels, such as conditionals and multiple outputs. Finch
also simplifies the complexities of sparse data manipulation,
enabling us towrite loop structures that appear dense but
are compiled to be sparse which makes it easier to focus
the optimizations we apply to take advantage of symmetry.
Figure 1 shows the syntax of Finch.

Figure 1. Finch Syntax [4, Figure 7]

Finch uses a hierarchical mode-by-mode fibertree descrip-
tion of tensor formats, where tensors are conceptualized as
a vector of vectors of vectors, etc. [10, 36] This allows us to
characterize each level of the tree as a separate vector type,
expressing several common sparse and structured tensor for-
mats as combinations of simple level formats. For example,
CSR format is Dense(Sparse(Element(0.0))), or a dense
vector of sparse vectors [26]. The 3-dimensional CSF format
is Dense(Sparse(Sparse(Element(0.0)))) [31]. We refer
the reader to literature on Finch for more information and
examples of tensor formats [4, Figure 6 and Table 3].
Critically, accesses to sparse tensors in Finch syntax (e.g.

x[i]) act as iterators over sparse tensors, and comparisons
between indices (e.g. i < j) are lifted into loop bounds. Thus,
the Finch code on left compiles to the code on the right.

x = Sparse(Element(0.0))
@finch
for i=_

if i < 7
s[] += x[i]

𝐹𝑖𝑛𝑐ℎ−−−−→

q = 1
stop = min(nnz(x), 7 − 1)
while i < stop

i = x.idx[q]
if i <= stop

s += x.val[q]
q += 1

3 Techniques to Exploit Symmetry
We categorize the symmetry that presents itself in assign-
ments in two groups: input symmetry, which involves
one or more input tensors being symmetric and output
symmetry, which consists of a symmetric output tensor.

Assignments can have either input or output symmetry, as
well as both types of symmetry. We make the distinction
because the techniques to exploit symmetry vary based on
the type of symmetry.

Furthermore, we can subdivide output symmetry into two
more intersecting types—visible and invisible, where visible
output symmetry is between indices that are present in the
output tensor and invisible output symmetry is between
indices that are not explicitly present in the output tensor,
but are still involved in the computation.

Example 3.1 (Visible and Invisible Output Symmetry). The
assignment 𝐵 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘] ∗𝐴[ 𝑗, 𝑘] exhibits visible output
symmetry. Essentially, 𝐵 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘] ∗𝐴[ 𝑗, 𝑘] = 𝐴[ 𝑗, 𝑘] ∗
𝐴[𝑖, 𝑘] = 𝐵 [ 𝑗, 𝑖]. Thus, we know that B exhibits {{𝑖, 𝑗}} sym-
metry. Because the symmetry is preserved in the output, we
refer to this symmetry as visible.

On the other hand, the assignment 𝐵 [𝑖] = 𝐴[𝑖, 𝑗] ∗𝐴[𝑖, 𝑘]
exhibits invisible output symmetry. Let us rewrite the assign-
ment with a temporary tensor 𝑇 as follows.

𝑇 [𝑖, 𝑗, 𝑘] = 𝐴[𝑖, 𝑗] ∗𝐴[𝑖, 𝑘]

𝐵 [𝑖] =
∑︁
𝑗,𝑘

𝑇 [𝑖, 𝑗, 𝑘]

Now the symmetry is more apparent: 𝑇 [𝑖, 𝑗, 𝑘] = 𝐴[𝑖, 𝑗] ∗
𝐴[𝑖, 𝑘] = 𝐴[𝑖, 𝑘] ∗𝐴[𝑖, 𝑗] = 𝑇 [𝑖, 𝑘, 𝑗]. T (and thus B) exhibit
{{ 𝑗, 𝑘}} symmetry. Because this symmetry is not seen in the
output 𝐵, we refer to this symmetry as invisible.

The two core strategies we have identified to exploit sym-
metry to make better use of memory and compute are (1)
reusing canonical reads to save on bandwidth and (2) filter-
ing redundant computations, which are dissected in more
detail in the following subsections.

3.1 Reusing Canonical Reads
When input tensors are symmetric, we can restrict reads
to the canonical triangle and use the same read to perform
multiple computations for the output. This is critical for
sparse inputs, since iteration over sparse inputs is expen-
sive, especially if we must iterate in multiple directions at
once, which is particularly relevant for iteration bound and
memory bound kernels (e.g. SSYMV). The efficiency of these
kernels is often limited by the rate at which data can be
transferred from the memory to the processor (memory
bandwidth) rather than the rate at which the processor can
perform calculations (compute throughput).
Let us take a look at what reusing canonical reads algo-

rithmically entails for the sparse symmetric matrix-vector
multiply (SSYMV) kernel given by 𝑦 [𝑖] = 𝐴[𝑖, 𝑗] ∗ 𝑥 [ 𝑗]. The
optimization in Figure 2 limits accesses of the symmetric
tensor to the canonical triangle and uses reads that are not
on the diagonal for two assignments and reads that are on
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for j=_, i=_
y[i] += A[i, j] ∗ x[j]

for j=_, i=_
if i < j

a = A[i, j]
y[i] += a ∗ x[j]
y[j] += a ∗ x[i]

if i == j
y[i] += A[i, j] ∗ x[j]

Figure 2. On left, a naive SSYMV. On right, SSYMV that
accesses only canonical triangle and reuses memory reads.

the diagonal for one assignment. Note that 𝑖 and 𝑗 are per-
muted in the second assignment and this makes up for not
covering the iteration space where 𝑖 > 𝑗 .
As the number of axes of symmetry increase, the com-

plexity of the symmetry-optimized kernel increases, but so
do the optimization opportunities. For instance, suppose
that 𝐴 in the mode-1 TTM kernel [21] given by 𝐶 [𝑖, 𝑗, 𝑙] =
𝐴[𝑘, 𝑗, 𝑙] ∗ 𝐵 [𝑘, 𝑖] is fully symmetry. The resulting kernel
from restricting accesses of 𝐴 to the canonical triangle and
performing all necessary updates to the output tensor 𝐶 is
given by Listing 1.

1 for l=_, i=_, k=_, j=_

2 if j <= k && k <= l

3 if j < k && k < l

4 A = A[j, k, l]

5 C[i, j, l] += A * B[k, i]

6 C[i, j, k] += A * B[l, i]

7 C[i, k, l] += A * B[j, i]

8 C[i, k, j] += A * B[l, i]

9 C[i, l, k] += A * B[j, i]

10 C[i, l, j] += A * B[k, i]

11 if j == k && k != l

12 A = A[j, k, l]

13 C[i, j, l] += A * B[k, i]

14 C[i, j, k] += A * B[l, i]

15 C[i, l, k] += A * B[j, i]

16 if j != k && k == l

17 A = A[j, k, l]

18 C[i, j, l] += A * B[k, i]

19 C[i, k, l] += A * B[j, i]

20 C[i, k, j] += A * B[l, i]

21 if j == k && k == l

22 C[i, j, l] += A[j, k, l] * B[k, i]

Listing 1. TTM kernel that accesses only the canonical
triangle of A.

The monotonically increasing condition on line 2 of List-
ing 1 enforces that we only iterate over the canonical triangle
of symmetric tensor 𝐴. With three axes of symmetry, there
are more diagonals to consider as the number of equivalence
groups increase: i.e. the diagonals represented by equivalence
groups {( 𝑗 = 𝑘)}, {(𝑘 = 𝑙)}, {( 𝑗 = 𝑙)}, and {( 𝑗 = 𝑘 = 𝑙)}. We
handle each of these diagonals separately in Listing 1, with

the exception of {( 𝑗 = 𝑙)} because our overarching mono-
tonically increasing condition ensures that if 𝑗 = 𝑙 , then we
are overlapping the diagonal represented by {( 𝑗 = 𝑘 = 𝑙)},
which we already handle.

Given 𝑛 axes of symmetry, upon restricting a kernel to ac-
cess only 1

𝑛! of a tensor, we need to perform𝑛! assignments in
each iteration to write to all the triangles of the output tensor
in the case where none of the 𝑛 indices are equivalent. How-
ever, if𝑚 indices are equivalent to each other (e.g. we read an
element on a diagonal of the symmetric tensor) then we only
perform 𝑛!

𝑚! assignments to avoid duplicate assignments. In
other words, we perform the same number of assignments
as unique permutations of the indices per iteration to make
up for the fact that we are only covering 1

𝑛! of the iteration
space. The simplest solution to symmetrize code and handle
these edge cases is to define every possible combination of
equivalent indices and specify each assignment to the output,
then optimize those statements.

3.2 Optimizing Multiple Triangular Assignments
The symmetrization process results in multiple assignments
being performed with one read of the symmetric tensors. Ex-
plicitly representing multiple triangular assignments makes
plain the redundancies of symmetry and allows us to easily
optimize or filter them.

3.2.1 Visible Output Symmetry. Visible output symme-
try involves indices that are used to index the output tensor.
In the presence of visible output symmetry, we can restrict
our kernel to compute the values comprising only the canon-
ical triangle of the output. Afterwards, we can perform an
extra post-processing step that consists of copying the canon-
ical triangle of the output to the other triangles.
For example, let us consider the first block of the sym-

metrized TTM kernel given in Listing 1 that performs the
assignments using coordinates of 𝐴 in the canonical triangle
that are not on a diagonal. We reorder the assignments to
make the pattern from output symmetry more obvious in
Listing 2. Swapping the second and third indices in the output
tensor on the left-hand side lends an equivalent right-hand
side for each expression. As depicted in Listing 3, we can
exploit the output symmetry by only writing to the canonical
triangle of the output tensor (i.e. if we index C as C[i, j,
l], then only where j <= l), which reduces the number of
computations that are done by a factor of 2. Then, we can
copy the values from the canonical triangles to the other
triangles of the output tensor in a separate loop nest (lines
7-9 of Listing 3), thus completing the remaining assignments.

1 for l=_, j=_, k=_, i=_

2 if j <= k && k <= l

3 A = A[j, k, l]

4 C[i, j, l] += A * B[k, i]

5 C[i, l, j] += A * B[k, i]

6 C[i, j, k] += A * B[l, i]
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7 C[i, k, j] += A * B[l, i]

8 C[i, k, l] += A * B[j, i]

9 C[i, l, k] += A * B[j, i]

Listing 2. Before exploiting output symmetry in the
conditional block of the TTM kernel that handles non-
diagonal coordinates of A.

1 for l=_, j=_, k=_, i=_

2 if j <= k && k <= l

3 A = A[j, k, l]

4 C[i, j, l] += A * B[k, i]

5 C[i, j, k] += A * B[l, i]

6 C[i, k, l] += A * B[j, i]

7 for l=_, j=_, i=_

8 if j > l

9 C[i, j, l] = C[i, l, j]

Listing 3. After exploiting output symmetry in the
conditional block of the TTM kernel that handles non-
diagonal coordinates of A.

In general, if 𝑛 indices are in the same part of a partition
representing the visible symmetry of the output tensor, then
we can reduce the number of operations by a factor of 𝑛!.

3.2.2 Invisible Output Symmetry. While visible output
symmetry results in equivalent assignments to multiple loca-
tions, invisible output symmetry results in equivalent assign-
ments to the same locations. We optimize redundant compu-
tation by replacing 𝑘 additions with equivalent right-hand
sides with a single addition that multiples the right-hand
side by scalar 𝑘 .
SYPRD is given by 𝑦 = 𝑥 [𝑖] ∗ 𝐴[𝑖, 𝑗] ∗ 𝑥 [ 𝑗] where A is

symmetric. SYPRD exemplifies invisible output symmetry
because the output is a scalar (and thus any output symmetry
must be with indices that are not present in the output). If
we permute 𝑖, 𝑗 , then we obtain an equivalent assignment.

𝑦 = 𝑥 [𝑖] ∗𝐴[𝑖, 𝑗] ∗ 𝑥 [ 𝑗] = 𝑥 [ 𝑗] ∗𝐴[ 𝑗, 𝑖] ∗ 𝑥 [𝑖]

Thus, instead of performing both non-diagonal assign-
ments in Listing 4 (lines 5-6), we can optimize by only per-
forming one assignment but multiplying it by a factor of 2,
as depicted in Listing 4 (line 3). Note that this does not apply
to the block that accesses the diagonal entries of 𝐴 because 𝑖
and 𝑗 are equivalent and thus there is only one assignment.

1 for j=_, i=_

2 if i <= j

3 if i < j

4 A = A[i, j]

5 y[] += x[i] * A * x[j]

6 y[] += x[j] * A * x[i]

7 if i == j

8 y[] += x[i] * A[i, j] * x[j]

Listing 4. SYPRD before exploiting output symmetry.

1 for j=_, i=_

2 if i < j

3 y[] += 2 * x[i] * A[i, j] * x[j]

4 if i == j

5 y[] += x[i] * A[i, j] * x[j]

Listing 5. SYPRD after exploiting output symmetry

Invisible output symmetry often presents itself when there
are multiple of the same operands in an assignment. Using
the same process depicted in the prior section, we may need
to swap around a few indices in the blocks accounting for
the diagonals to make the invisible output symmetry more
apparent. This normalization makes it easier to pinpoint
when assignments are equivalent.

If 𝑛 indices are in the same part of a partition representing
the invisible symmetry of the output tensor, then we can
reduce the number of operations by a factor of 𝑛!.

4 Symmetric Compiler Methodology
Given an assignment and a map of input tensors that are
known to be symmetric and the partitions that represent
their symmetries, to take advantage of symmetry, we need
to first generate a kernel that reuses memory reads and
then, filter the resulting redundant computations. For simple
assignments, it is easy to do this by hand, but as the number
of indices involved in a symmetry group, the dimensionality
of the tensors, and the number of tensors in the assignment
increase, writing a symmetric kernel becomes less intuitive
and more akin to a trial-and-error process. In this section,
we propose a mechanical, generalizable system to generate a
symmetry-exploiting kernel that is applicable to any tensor
assignment and which can be replicated in any compiler.

We divide this system in two phases to reflect the two core
strategies of first capitalizing on memory bandwidth and
then compute throughput. The first phase is symmetrization
and consists of generating code to read only the canonical
triangle(s) of the symmetric tensor(s). The second phase is
optimization and consists of applying various transforms to
reduce the number of memory accesses and operations that
are performed.

4.1 Symmetrization
The process of symmetrization involves adding the appro-
priate control structures to limit the iteration space to the
canonical triangles of the symmetric input tensors and deter-
mining which additional assignments will need to be made
and and under what conditions to ensure that all the appro-
priate updates to the output tensor are performed.
We will use set 𝑆𝑇 to represent the equivalent permuta-

tions of a fully or partially symmetric tensor 𝑇 . If 𝑇 is fully
symmetric, 𝑆𝑇 is the set of all permutations of {1, ..., 𝑛}. If 𝑇
is partially symmetric with partition Π, 𝑆𝑇 is the set of all
permutations 𝜎 of {1, ..., 𝑛} which only permute elements
within their parts in Π.
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Given an assignment

𝑂 [𝑖1, ..., 𝑖𝑛] = 𝑇1 [𝑖1,1, ..., 𝑖1,𝑛1 ] ⊗ ... ⊗ 𝑇𝑚 [𝑖𝑚,1, ..., 𝑖𝑚,𝑛𝑚 ],

let Π𝑖 be the partition that defines the symmetry of 𝑇𝑖 . Fur-
thermore, we represent the symmetry groups as 𝑆𝑇1 , ..., 𝑆𝑇𝑚
and 𝑆𝑂 .
To represent and easily distinguish which diagonal of a

tensor we are accessing, we introduce the notion of equiva-
lence groups—a term that we have formulated to represent
the tensor generalizations of diagonals.

Definition 4.1 (Equivalence Group). Given a set of indices
𝐼 , we define equivalence group 𝐸 to represent a partition Π
of indices 𝑖 ∈ 𝐼 where for each part 𝜋 ∈ Π, 𝑖𝑛 = 𝑖𝑚 for all
𝑛,𝑚 ∈ 𝜋.

We define the notation symmetry group 𝑆𝑇 |𝐸 to repre-
sent the unique permutations of a tensor’s indices given a
particular equivalence group 𝐸.

Definition 4.2 (Unique Symmetry Group). Let 𝑆𝑇 |𝐸 repre-
sent the unique symmetry group, which given an equivalence
group 𝐸, consists of 𝑆𝑇 |𝐸 = {𝜋 ∈ 𝑆𝑛 | ∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}, if
𝑖, 𝑗 are both in the same subset of 𝐸, then 𝜋 (𝑖) < 𝜋 ( 𝑗)}.

The four stages below delineate the process to systemati-
cally generate a symmetrized kernel for this assignment. We
assume that in addition to the assignment itself, the client
has also provided the partitions Π𝑖 for each input tensor 𝑇𝑖
as well as the loop order (i.e. the order in which they will be
looping through the indices in the assignment).

1. Identify Symmetry: First, we determine the set of
permutable indices 𝑃 , which is given by

𝑃 =

𝑚⋃
𝑖=1

(⋃
{𝜋 ∈ Π𝑖 | |𝜋 | > 2}

)
and includes all indices in the tensor assignment that
are in a symmetry group with more than one index.
Note that this step overapproximates symmetry—for
instance, if we have {{1, 2}, {3, 4}} symmetry in a ten-
sor, we obtain 𝑃 = {1, 2, 3, 4}.

2. Restrict Iteration Space: We establish an ordering
𝑝1, ..., 𝑝𝑛 of the permutable indices in 𝑃 such that ac-
cessing any tensor 𝑇𝑖 at entries where 𝑝1, ..., 𝑝𝑛 are
monotonically increasing (i.e. 𝑝1 ≤ ... ≤ 𝑝𝑛) will only
access the canonical triangle of all symmetric tensors.
This ordering is a topological sort of the dependence
graph between canonical indices and always exists.

3. Define Assignments: For each equivalence group
𝐸 that can be constructed from 𝑃 and satisfies the
monotonically increasing condition established in step
(2), we determine the unique symmetry group 𝑆𝑃 |𝐸
where 𝑆𝑃 consists of all the permutations of 𝑃 . Then
we can apply each permutation𝜎 ∈ 𝑆𝑃 |𝐸 to the original
assignment to generate all the assignments that need to

be performed if the equivalence relationships defined
by 𝐸 are satisfied.

4. Normalize Assignments: Lastly, we normalize all
assignments to make it easier to identify equivalent
assignments or patterns across assignments during the
optimization process. There are many ways to rewrite
an expression and yield an equivalent result; namely,
indices in a symmetric group of a symmetric tensor
can be permuted and operands involved in commuta-
tive operations can be commuted. Standardizing tensor
assignments can make it easier to programmatically
identify equivalent assignments and distinguish pat-
terns across assignments. Thus, we define the notion
of a normalized assignment to be an assignment were
(1) all tensors on the right-hand side have been or-
dered based on some predetermined sort order (e.g.
alphabetical) and (2) for all symmetric tensors𝑇𝑖 in the
assignment, all indices in the same part of the parti-
tion Π𝑖 representing the symmetry of 𝑇𝑖 are ordered
based on some predetermined sort order (e.g. to be
concordant with the loop order).

The resulting symmetrized kernel from applying these
steps is depicted via mathematical pseudocode in Figure 3.
We first enforce the monotonically increasing condition for
the permutable indices (line 1) to restrict the iteration space
to the canonical triangles of the symmetric tensors. We iter-
ate through all possible equivalence groups of 𝑃 (line 3) and
for each, determine the set of unique permutations of 𝑃 given
the equivalence group (line 4). We apply each of these unique
permutations to the initial assignment (line 6) to obtain all
the assignments that are performed for the equivalence rela-
tionships represented by corresponding equivalence group.

1: for 𝑖1 = 1 : _, 𝑖2 = 1 : _, ... do
2: if 𝑝1 ≤ ... ≤ 𝑝𝑛 then
3: for all 𝐸 of 𝑃 do
4: Construct 𝑆𝑃 |𝐸
5: for all 𝜎 ∈ 𝑆𝑃 |𝐸 do
6:

(
𝑂 [𝑖1, ..., 𝑖𝑛] = 𝑇1 [𝑖11, ..., 𝑖1𝑛] ⊗ ... ⊗ /

7: 𝑇𝑚 [𝑖𝑚1 , ..., 𝑖𝑚𝑛 ]
)
[𝑖 → 𝜎 (𝑖)]

8: end for
9: end for
10: end if
11: end for

Figure 3. Pseudocode for Symmetrized Kernel

We can furthermore unroll the loops from lines 5-7 and
lines 3-8 in Figure 3 to generate a more efficient kernel. Ad-
ditionally, note that each equivalence group is exclusive (i.e.
a coordinate only satisfies one of the equivalence groups),
so when we do unroll the loops, the conditional blocks that
are generated are exclusive.
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Figure 4. Symmetric Compiler Flow

4.2 Optimization
After symmetrizing the kernel such that it accesses only the
canonical triangle(s) of the symmetric tensor(s), we shift to
applying various transforms to reduce the number of compu-
tations performed. These transforms are the building blocks
for filtering redundant code. Several of these transformations
may be familiar, but these transformations are performed
at the level of sparse tensor computation in Finch IR before
Finch lowers to Julia and then LLVM IR. Therefore, we can-
not rely on the Julia or LLVM compilers to perform these
optimizations. The simplicial lookup tables and diagonal split-
ting are novel, as is the overall composition of these trans-
forms with the goal of exploiting symmetry. The compiler is
summarized in Figure 4.

4.2.1 Common Tensor Access Elimination. We replace
repeated reads of the same element in a tensor with a sin-
gle constant value. In particular, after normalizing the sym-
metrized kernel, all accesses to a fully symmetric tensor will
be equivalent in each iteration of a loop. For a fully sym-
metric tensor of order 𝑛, this will entail reducing memory
reads by a factor of 𝑛!. Accesses to other tensors might also
be repeated and thus, can also be consolidated. This step is
crucial for the Finch compiler because it understands each

tensor access as a separate iterator, and multiple redundant
accesses would lead to intersecting multiple iterators in the
loop. Thus, this step must be applied before running Finch.

y[i] += A[i, j] ∗ x[j]
y[j] += A[i, j] ∗ x[i]

temp = A[i, j]
y[i] += temp ∗ x[j]
y[j] += temp ∗ x[i]

4.2.2 Restrict Computation of Output to Canonical
Triangle. Identify assignments with equivalent right-hand
sides that update symmetric entries of the output tensor (i.e.
coordinates with particular indices swapped) in the same
conditional block. In this case, replace the symmetric assign-
ments with just one assignment to the canonical coordinate
of the output tensor. We also mark the indices across which
the output tensor will need to be replicated. After the kernel
is computed, the canonical triangle of the output tensor can
be replicated to the noncanonical triangles if needed. We
chose to do the replication in a separate loop as the main
loop may access the same output location multiple times.
By keeping these loops separate, we avoid repeating the
out-of-order access required to replicate the output tensor.

for j=_, i=_
if i <= j

y[i, j] += A[i, j] ∗ x[j]
y[j, i] += A[i, j] ∗ x[j]

for j=_, i=_
if i <= j

y[i, j] += A[i, j] ∗ x[j]
for j=_, i=_

if i > j
y[i, j] = y[j, i]

4.2.3 Concordize Tensors. Transpose tensors to make
the iteration of indices concordant [5]. A program is concor-
dant when the order of indices in each tensor access match
the order in which loops are nested around it. If necessary,
transpose the tensor and reorder the loops to make itera-
tion concordant. This step is critical for sparse tensors, as
we can only iterate over hierarchical sparse formats with
a concordant traversal. Concordant traversal is faster for
dense tensors as well. Given a particular loop order and set
of tensors, we prioritize transposing the tensors with fewer
dimensions (and/or modifying the loop order if necessary)
over those with more dimensions for efficiency.

for j=_, k=_, i=_
C[i, j] += A[i, k] ∗ B[k, j]
C[k, j] += A[i, k] ∗ B[i, j]

for k=_, i=_, j=_
C_T[j, i] += A[i, k] ∗ B_T[j, k]
C_T[j, k] += A[i, k] ∗ B_T[j, i]

4.2.4 Consolidate Conditional Blocks. Identify condi-
tional blocks containing equivalent assignments and replace
themwith a single conditional blockwith an if-condition that
is the union of the if-conditions of each of the conditional
blocks. This transform improves the readability of the gen-
erated kernel and also prevents unnecessary specialization
of cases during Finch compilation.
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if i == j
y[i] += A[i, j] ∗ x[j]

if i < j
y[i] += A[i, j] ∗ x[j]

if (i == j) || (i < j)
y[i] += A[i, j] ∗ x[j]

4.2.5 Simplicial Lookup Table. Given multiple condi-
tional blocks with the same assignments but with different
constant factors, we combine them into a single block and
generate a lookup table that is used to determine the constant
factor. We index into the lookup table using some product
of primes based on which indices are equivalent.

if (i != k) && (k != l)
C[l, j] += 2 ∗ A[i, k, l] ∗ B[i, j]
C[k, j] += 2 ∗ A[i, k, l] ∗ B[l, j]
C[i, j] += 2 ∗ A[i, k, l] ∗ B[k, j]

if ((i != k) && (k == l))
|| ((i == k) && (k != l))

C[l, j] += A[i, k, l] ∗ B[i, j]
C[k, j] += A[i, k, l] ∗ B[l, j]
C[i, j] += A[i, k, l] ∗ B[k, j]

if (i == k) && (k == l)
C[l, j] += A[i, k, l] ∗ B[i, j]

lookup_table = [2, 0, 1, 1, 0, 0, 1/3]
idx = 2 ∗ (i == k) + 3 ∗ (k == l) + 1
factor = lookup_table[idx]

C[l, j] += factor ∗ A[i, k, l] ∗ B[i, j]
C[k, j] += factor ∗ A[i, k, l] ∗ B[l, j]
C[i, j] += factor ∗ A[i, k, l] ∗ B[k, j]

4.2.6 Group Assignments Across Branches. Many of
the same assignments are performed in different branches
in the code generated from the symmetrization process. Re-
structure and reorganize the generated code such that each
assignment is called only once. This particular transform is
beneficial when the total number of unique assignments (af-
ter applying the previous transforms) is less than the number
of conditional blocks and we only apply it when this is the
case; it also improves the readability of the generated ker-
nel and prevents unnecessary specialization of cases during
compilation.

if i < j
y[i] += A[i, j] ∗ x[j]
y[j] += A[i, j] ∗ x[i]

if i == j
y[i] += A[i, j] ∗ x[j]

if i < j || i == j
y[i] += A[i, j] ∗ x[j]

if i < j
y[i] += A[i, j] ∗ x[i]

4.2.7 Distributive Assignment Grouping. Replace 𝑁

equivalent additions in a conditional block with a single
addition that multiples the right-hand side by 𝑁 .

y[i] += A[i, j] ∗ x[j]
y[i] += A[i, j] ∗ x[j]

y[i] += 2 ∗ A[i, j] ∗ x[j]

4.2.8 Workspace Transformation. Replace a write to
the output tensor in an assignment with a write to a tempo-
rary variable defined just inside the innermost loop 𝐿 that
iterates through an index used to access the output tensor
in the assignment. Accumulate updates in this temporary

variable and write back the sum to the output tensor just at
the end of this loop. This is worthwhile to do when there are
more for loops inside 𝐿.

for j=_, i=_
y[i] += A[i, j] ∗ x[j]
y[j] += A[i, j] ∗ x[i]

for j=_
temp = 0
for i=_

y[i] += A[i, j] ∗ x[j]
temp += A[i, j] ∗ x[i]

y[j] += temp

4.2.9 Diagonal Splitting. Moving specific conditional
blocks into a separate loop nest. Because non-diagonal val-
ues form the bulk of the values in a tensor, we can think
of assignments that involve the diagonal entries of a sym-
metric tensor as an edge case and compute them separately.
In particular, we can move the conditional blocks involving
non-diagonal entries in a separate loop nest.

for j=_, i=_
if i != j

y[i] += A[i, j] ∗ x[j]
if i == j

y[i] += A[i, j] ∗ x[j]

for j=_, i=_
if i != j

y[i] += A[i, j] ∗ x[j]
for j=_, i=_

if i == j
y[i] += A[i, j] ∗ x[j]

4.3 MTTKRP Demonstration

1: for 𝑗 = 1 : _, 𝑙 = 1 : _, 𝑘 = 1 : _, 𝑖 = 1 : _ do
2: if 𝑖 ≤ 𝑘 ≤ 𝑙 then
3: if 𝐸 = { (𝑖 ), (𝑘 ), (𝑙 ) } then
4: for all 𝜎 ∈ { (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) } do
5: (𝑖, 𝑘, 𝑙 ) = 𝜎 ( (𝑖, 𝑘, 𝑙 ) )
6: 𝐶 [𝑖, 𝑗 ] = 𝐴[𝑖, 𝑘, 𝑙 ] ∗ 𝐵 [𝑙, 𝑗 ] ∗ 𝐵 [𝑘, 𝑗 ]
7: end for
8: end if
9: if 𝐸 = { (𝑖 = 𝑘 ), (𝑙 ) } then
10: for all 𝜎 ∈ { (1, 2, 3), (1, 3, 2), (3, 1, 2) } do
11: (𝑖, 𝑘, 𝑙 ) = 𝜎 ( (𝑖, 𝑘, 𝑙 ) )
12: 𝐶 [𝑖, 𝑗 ] = 𝐴[𝑖, 𝑘, 𝑙 ] ∗ 𝐵 [𝑙, 𝑗 ] ∗ 𝐵 [𝑘, 𝑗 ]
13: end for
14: end if
15: if 𝐸 = { (𝑖 ), (𝑘 = 𝑙 ) } then
16: for all 𝜎 ∈ { (1, 2, 3), (2, 1, 3), (3, 1, 2) } do
17: (𝑖, 𝑘, 𝑙 ) = 𝜎 ( (𝑖, 𝑘, 𝑙 ) )
18: 𝐶 [𝑖, 𝑗 ] = 𝐴[𝑖, 𝑘, 𝑙 ] ∗ 𝐵 [𝑙, 𝑗 ] ∗ 𝐵 [𝑘, 𝑗 ]
19: end for
20: end if
21: if 𝐸 = { (𝑖 = 𝑘 = 𝑙 ) } then
22: for all 𝜎 ∈ { (1, 2, 3) } do
23: (𝑖, 𝑘, 𝑙 ) = 𝜎 ( (𝑖, 𝑘, 𝑙 ) )
24: 𝐶 [𝑖, 𝑗 ] = 𝐴[𝑖, 𝑘, 𝑙 ] ∗ 𝐵 [𝑙, 𝑗 ] ∗ 𝐵 [𝑘, 𝑗 ]
25: end for
26: end if
27: end if
28: end for

Figure 5. MTTKRP Symmetrization: We construct the
unique symmetry groups given each equivalence group.

Let us apply this technique to the MTTKRP kernel given
by𝐶 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘, 𝑙] ∗𝐵 [𝑙, 𝑗] ∗𝐵 [𝑘, 𝑗]. If A is fully-symmetric,
the set of permutable indices is given by 𝑃 = {𝑖, 𝑘, 𝑙} and we
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can establish ordering 𝑖, 𝑘, 𝑙—such that if these indices are
monotonically increasing, we will only access the canonical
triangle of𝐴. The equivalence groups that can be constructed
from 𝑃 and which satisfy the that 𝑖 ≤ 𝑘 ≤ 𝑙 are {(𝑖), (𝑘), (𝑙)},
{(𝑖 = 𝑘), (𝑙)}, {(𝑖), (𝑘 = 𝑙)}, and {(𝑖 = 𝑘 = 𝑙)}.
Next, we determine the unique symmetry group 𝑆𝑃 |𝐸

for each equivalence group 𝐸. For instance, for equivalence
group {(𝑖 = 𝑘), (𝑙)}, 𝑆𝑃 |𝐸 = {(1, 2, 3), (1, 3, 2), (3, 1, 2)}. Thus,
the pseudocode in Figure 3 expands to Figure 5. The normal-
ized equivalent is given by Listing 6.

1 function mttkrp(C, A, B)

2 for l=_, j=_, k=_, i=_

3 if i <= k && k <= l

4 if i != k && k != l

5 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

6 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

7 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]

8 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]

9 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]

10 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]

11 if i == k && k != l

12 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

13 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

14 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]

15 if i != k && k == l

16 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

17 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]

18 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]

19 if i == k && k == l

20 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

Listing 6. Normalized Symmetric MTTKRP Kernel

After performing common tensor access elimination, dis-
tributive assignment grouping, consolidating conditional
blocks, diagonal splitting, and lastly, concordizing tensors,
we obtain the code given by Listing 7.

1 function mttkrp(C, A_nondiag, A_diag, B)

2 for l=_, k=_, i=_, j=_

3 A = A_nondiag[i, k, l], B_ji = B_T[j, i], B_jk =

B_T[j, k], B_jl = B[j, l]

4 if i <= k && k <= l

5 if i != k && k != l

6 C_T[j, i] += 2 * A * B_jk * B_jl

7 C_T[j, k] += 2 * A * B_ji * B_jl

8 C_T[j, l] += 2 * A * B_ji * B_jk

9 for l=_, k=_, i=_, j=_

10 A = A_diag[i, k, l], B_ji = B_T[j, i], B_jk = B_T

[j, k], B_jl = B[j, l]

11 if i <= k && k <= l

12 if (i == k && k != l) || (i != k && k == l)

13 C_T[j, i] += A * B_jk * B_jl

14 C_T[j, l] += A * B_ji * B_jk

15 C_T[j, k] += A * B_ji * B_jl

16 if i == k && k == l

17 C_T[j, i] += A * B_jk * B_jl

Listing 7.MTTKRP: Separate Loop Nests

5 Evaluation
5.1 Implementation
We implemented the SySTeC compiler in Julia and demon-
strated that the performance of the generated kernels was
competitive on the SSYMV, SYPRD, SSYRK, TTM, and MT-
TKRP operations when compared against the naive Finch
implementation[4], TACO [19], symmetric MKL [2], and
SPLATT [31]. The implementation is available on github 1.

Provided a single Finch assignment and a list of symmetric
tensors, SySTeC outputs an executable kernel in Finch IR
that exploits symmetry. SySTeC uses RewriteTools[3], the
same rewriting package used by Finch [5], to define a set of
simplification rules and identify specific control structures,
einsums, and operations to which these rules are applied.

SySTeC generates code in two phases according to Section
4: in the symmetrization phase, the compiler first generates an
executable kernel that only accesses the canonical triangle. In
the optimization phase, the compiler performs transforms to
reduce operation count. Each transform from Section 4.2 has
been mapped into a rewrite rule that is applied if applicable.

5.2 Results
All experiments were run on a single core of a 12-core 2-
socket Intel Xeon CPU E5-2680 v3 running at 2.50GHz with
128GB of memory. We used v0.6.22 of the Finch library to
implement the kernels and executed both the naive and op-
timized implementation generated by SySTeC. We compare
all kernels to the column-major implementations in TACO,
and additionally SSYMV to MKLSparse v1.1.0 and MTTKRP
to SPLATT. We used Julia v1.10 to run the tests and all tim-
ings are the minimum of 10,000 runs or 5s of measurement,
whichever happens first. The time to rearrange data before
or after each kernel is not included in the timings, including
transposition or replicating the output.

Table 2. Matrix collection used in the experiments, taken
from Vuduc et. al [37].

Name Dimension Nonzeros
bayer02 13935 63679
bayer10 13436 94926
bcsstk35 30237 1450163
coater2 9540 207308
crystk02 13965 968583
crystk03 24696 1751178
ct20stif 52329 2698463
ex11 16614 1096948
finan512 74752 596992
gemat11 4929 33185
goodwin 7320 324784
lhr10 10672 232633
lnsp3937 3937 25407
memplus 17758 126150
nasasrb 54870 2677324

Name Dimension Nonzeros
olafu 16146 1015156
onetone2 36057 227628
orani678 2529 90185
raefsky3 21200 1488768
raefsky4 19779 1328611
rdist1 4134 94408
rim 22560 1014951
saylr4 3564 22316
sherman3 5005 20033
sherman5 3312 20793
shyy161 76480 329762
venkat01 62424 1717792
vibrobox 12328 342828
wang3 26064 177168
wang4 26068 177196

For the SSYMV, SYPRD, and SSYRK kernels, we evaluated
with the matrix benchmark suite used by Vuduc et. al [37],
1https://github.com/radha-patel/symmetry-compiler
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shown in Table 2. The asymmetric matrices in the suite were
symmetrized by summing the transpose (i.e. 𝐴 +𝐴𝑇 ). To our
knowledge, there does not exist a database of symmetric
tensors so for the MTTKRP kernels, we generated uniformly
distributed symmetric random sparse tensors of varying sizes
and sparsities via an Erdős–Rényi distribution. The dense
input matrices are also randomly generated. The numerical
rank is the number of columns in the dense matrix, where
applicable.
In Figures 6-11, we normalize all results to naive Finch;

the red line specifies the performance of naive Finch (our
baseline) and the purple line the speedup we expect.

5.2.1 SSYMV. The sparse symmetric matrix vector kernel
is given by 𝑦 [𝑖] = 𝐴[𝑖, 𝑗] ∗ 𝑥 [ 𝑗] where A is symmetric and
CSC, and y and x are dense.
The optimized kernel accesses only 1

2 of the values of A,
but performs all of the computations. In cases where SSYMV
is bandwidth bound, we can expect a speedup approaching
2x, however we don’t expect any computational savings here.
We find that SySTeC is 1.45, 1.45, and 1.90 times faster on
average than the naive Finch implementation, TACO, and
MKL’s mkl_dcsrsymv, respectively (Figure 6). MKL was the
only commercial sparse SYMV implementation for cpu we
found, but is either not taking advantage of symmetry or not
optimized for a single threaded case. TACO may be faster
than naive Finch because it emits simpler loop bounds for
SPMV that are more amenable to compiler optimizations.

5.2.2 Bellman-Ford Update. The sparse symmetric
Bellman-Ford update kernel is given by 𝑦 [𝑖]𝑚𝑖𝑛 = 𝐴[𝑖, 𝑗] +
𝑑 [ 𝑗] where A is symmetric and CSC, and y and d are dense.
Here, 𝑑 represents shortest path lengths after 𝑘 steps, 𝐴 rep-
resents the edge distances, and𝑦 represents the shortest path
lengths after 𝑘 + 1 steps. This kernel is identical to SSYMV
from a performance perspective, as seen in Figure 7, but
is included to show that SySTeC can handle symmetrizing
operations beyond + and ∗.

5.2.3 SYPRD. The symmetric triple product kernel is given
by 𝑦 [] = 𝑥 [ 𝑗] ∗𝐴[𝑖, 𝑗] ∗ 𝑥 [𝑖] where A is symmetric and CSF
and y and x are dense.
The optimized kernel accesses 1

2 of the values of A and
performs 1

2 of the computations because we have {{𝑖, 𝑗}} in-
visible symmetry in C. As 𝑛 grows, we can expect a speedup
of 2x. We find that SySTeC is 1.79 and 1.46 times faster on
average than naive Finch and TACO (Figure 8). We may not
have achieved 2x speedup everywhere because the symmet-
ric code needs to terminate the iteration through the sparse
matrix early to restrict to the triangle, which complicates
the exit condition of the loop.

5.2.4 SSYRK. The sparse symmetric rank-k update is given
by 𝐶 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘] ∗𝐴[ 𝑗, 𝑘] where A is not symmetric, but

by nature of the computation, C is symmetric. A and C are
both CSF.
The optimized kernel accesses all values of A because A

is not symmetric, but performs only 1
2 of the computations

and writes to C because we exploit the {{𝑖, 𝑗}} output visible
symmetry in C. Because SSYRK is compute-bound, we expect
a speedup of 2x. We find that SySTeC is 2.20 times faster
than naive Finch (Figure 9). TACO does not support the outer
products implementation of SSYRK. We believe we exceed
the expected speedup due to increased reuse of rows of A in
the point of the triangle.

5.2.5 TTM. The tensor times matrix kernel is given by
𝐶 [𝑖, 𝑗, 𝑙] = 𝐴[𝑘, 𝑗, 𝑙] ∗𝐵 [𝑘, 𝑖] where A is fully symmetric CSF,
and B and C are dense.
The optimized kernel accesses only 1

6 of the values of A
and performs 1

2 of the computations (and hence writes 1
2 of

the values to C) because we take advantage of the {{ 𝑗, 𝑙}}
symmetry in C. We can therefore expect a speedup of at least
2x. We find that SySTeC is 2.09 and 1.13 times faster than
naive Finch and TACO, respectively, with high density and
low numerical rank. SysTeC underperforms naive Finch for
high numerical rank because the overhead of initializing the
dense output outweighs the cost of the computation.

5.2.6 MTTKRP. The MTTKRP (matricized tensor times
Khatri-Rao product) kernel is used in tensor factorization,
namely to compute the CPD (Canonical Polyadic Decom-
position) of a tensor [21]. Typically, the factorization of an
𝑁 -dimensional tensor requires 𝑁 MTTKRP kernels, each
executed on a different transposition of the tensor. When
the tensor is symmetric, no transpose is required because all
transpositions of the tensor are equivalent. While CPD typi-
cally involves separate factor matrices for each dimension,
the symmetric CPD problem uses the same factor matrix for
all dimensions. This means that the update step is identi-
cal in all the modes, and the algorithm is more efficient [20,
Algorithm 2].

The assignments for the 3-, 4-, and 5-dimensional kernels
are given below where A is CSF and B and C are dense.

𝐶 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘, 𝑙] ∗ 𝐵 [𝑘, 𝑗] ∗ 𝐵 [𝑙, 𝑗]
𝐶 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘, 𝑙,𝑚] ∗ 𝐵 [𝑘, 𝑗] ∗ 𝐵 [𝑙, 𝑗] ∗ 𝐵 [𝑚, 𝑗]
𝐶 [𝑖, 𝑗] = 𝐴[𝑖, 𝑘, 𝑙,𝑚, 𝑛] ∗ 𝐵 [𝑘, 𝑗] ∗ 𝐵 [𝑙, 𝑗] ∗ 𝐵 [𝑚, 𝑗] ∗ 𝐵 [𝑛, 𝑗]

The optimized kernels our compiler implementation gen-
erates for MTTKRP consist of two loop nests, one that han-
dles the triangles and another to handle the diagonals to
simplify control flow logic. For the 3D case, the optimized
kernel accesses only 1

6 of the values of A and performs 1
2 of

the computations because we have {{𝑘, 𝑙}} invisible symme-
try in C. For the 4D case, the optimized kernel accesses only
1
4! =

1
24 of the values of A and performs 1

3! =
1
6 of the com-

putations because we have {{𝑘, 𝑙,𝑚}} invisible symmetry
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Figure 6. SSYMV Performance

Figure 7. Bellman-Ford Step Performance

Figure 8. SYPRD Performance

in C. Lastly, for the 5D case, the optimized kernel accesses
only 1

5! = 1
120 of the values of A and performs 1

4! = 1
24 of

the computations because we have {{𝑘, 𝑙,𝑚, 𝑛}} invisible
symmetry in C. Thus, we expect speedups of 2x, 6x, and 24x
and obtain maximal speedups of 3.38, 7.35, and 29.8 times
for 3-, 4-, and 5-dimensional MTTKRP, respectively, with
SySTeC over naive Finch (Figure 11). We attribute the above-
expected speedups over naive Finch to register reuse of the
input tensors in the symmetric code.

6 Related Work
Several tensor compilers support sparse tensor operations,
but have no support for tensor symmetry, such as TACO [19],
SparseLNR [13], SPARTA [23], and MLIR [8]. We therefore
expect these systems would perform similarly to TACO in
our evaluation.
Directly related techniques fall into three categories: Li-

braries which collect hand-specialized symmetric kernels,
compilers which reduce symmetric problems to multiple

57



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Radha Patel, Willow Ahrens, and Saman Amarasinghe

Figure 9. SSYRK Performance

Figure 10. TTM Performance

asymmetric or hand-written kernels, and compilers which
produce direct solutions to symmetric problems.
Many libraries contain at least the dense

symmetry-specific functions specified in the BLAS [7], such
as ATLAS [11], MKL [2], and CuBLAS [1]. Of these, onlyMKL
implementsmultiple sparse symmetric kernels. CuBLAS only
handles sparse symmetry in SpMV. This reflects an imple-
mentation burden that further motivates our work.
Most of the work on symmetric compilers reduces sym-

metric problems to other kernels. The most notable of these
is the Cyclops Tensor Framework (CTF). CTF reduces 𝑁 -
dimensional dense symmetric contractions to 𝑁 ! separate
triangular contractions, linearizes triangular indices which
are preserved in the output, then dynamically loops over
the remaining triangular indices and repeatedly calls ma-
trix multiply, saving compute and storage [33, 34]. However,
this approach does not extend to kernels which are not con-
tractions (such as MTTKRP) or do not use + and ∗ (such as
min-+ semiring multiplication [9]), and cannot benefit from
within-kernel reuse of the redundant arguments that are pro-
duced by the problem reduction. This approach also requires
transposing and reformatting arguments before running the
kernel, which may be expensive in comparison to the cost
of the kernel. It also only supports one sparse argument at a

time (likely due to the complexity of sparse-sparse interac-
tions in the triangular loops). The OpMin system provides
an operation optimization process that identifies the opti-
mal ordering of tensors in a tensor contraction, but does not
produce the code to compute the contraction [22].

Few compilers produce code that directly computes sym-
metric kernels. Shi et. al. proposes to use an output-oriented
loop structure which iterates through the unique inputs
needed to compute the result, but the corresponding ran-
dom access of the symmetric input resulted in poor per-
formance [29]. STUR symbolically optimizes kernels based
on the structure (triangular, banded, symmetric, etc.) of the
arguments using a term rewriting approach, but cannot han-
dle dynamic sparsity patterns, and is not as specialized to
symmetry [15]. Similarly, Spampinato proposes a polyhedral
approach (sBLACs) to generating structured code, but does
not address dynamic sparsity or even tensors of dynamic
sizes [35]. The ITensor library has several library routines
for symmetric tensors within tensor networks, but these
routines do not handle unstructured sparsity either [14].
Other works propose more specialized techniques for

symmetric tensors which we do not attempt in this work.
Solomonik also proposes a Strassen-like algorithm to re-
duce operation count with the symv, syr2, syr2k, and symm
kernels [32], which is beyond the scope of this paper. The
Blocked Compact Symmetric format proposed by Schatz et.
al for the TTM kernel breaks tensors into blocks, processing
only canonical blocks of symmetric tensors [27]. However,
the implementation does not handle sparse tensors, and can-
not optimize diagonal blocks.

7 Future Work
Several avenues for future research remain:

1. Generalizing to More Types of Symmetry: We
can expand and adapt our methodology to encompass
other forms of symmetry like antisymmetry, block
symmetry, or cyclic symmetry that commonly arise in
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Figure 11. 3-, 4-, and 5-dimensional MTTKRP performance over varying sparsity and numerical rank

physics, mathematics, chemistry, and machine learn-
ing.

2. Exploring Parallelization Opportunities: Incorpo-
rating parallelization is important for increasing the
practicality of our system, and are actively working
towards that goal. In distributed memory settings, the
block-cyclic distribution employed by Cyclops [34]
would decompose the problem into several smaller,
symmetric instances that we could process with SyS-
TeC out of the box. In multicore settings, we plan to
tag an outer loop as parallel. Of course, because it-
eration over the canonical triangle modifies different
transpositions of the output at once, we will also need
to make atomic updates to the output.

3. Fine-Tuning Symmetric Optimizations: Data for-
mats tailored to symmetry that provide more efficient
access when iterating over different transpositions of
the canonical triangle could significantly improve per-
formance. Symmetry-aware formats could also elimi-
nate or simplify extra post-processing steps like repli-
cating the canonical triangle of a tensor to the non-
canonical triangles. Additionally, our implementation
of Systec fully optimizes for every symmetry in the
kernel, but we could develop approaches to partially
optimize for symmetry only when it is beneficial.

8 Conclusion
In this paper, we demonstrated a systematic approach to
exploit symmetry in arbitrary tensor kernels. We identified
core strategies to exploit symmetry in tensor kernels, includ-
ing memory read reuse and redundant computation filtering.
We also proposed a detailed compiler methodology for me-
chanically generating and optimizing symmetric code. This
methodology involved two stages: first, symmetrizing the
kernel such that we only access the canonical triangle of
symmetric inputs, and secondly, applying a set of transforms
to further optimize the code. We ultimately implemented
this methodology in a Julia-based compiler and evaluated

its performance on several common tensor kernels, showing
significant speedups.
This work provides a strong foundation for exploiting

symmetry in tensor kernels.

9 Data Availability Statement
The data that support the findings of this study are openly
available in Zenodo at https://zenodo.org/records/13821280.
[25].
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A Artifact Appendix
A.1 Abstract
This artifact provides all of the necessary tools to reproduce
the program compilation and charts presented in the paper,
with the exception of SSYRK (which takes too much time and
memory), and MKL, which is too cumbersome to install. The
datasets given to TTM and MTTKRP are smaller here than
in the paper. We claim that all speedups should be within
1.5 of the expected, with few exceptions. We note that there
was a bug in the TACO TTM results in the submitted version
which has been fixed here, so the results may not match the
submitted version, but do match the camera ready.

A.2 Artifact Check-list (Meta-Information)
• Algorithm: We present a new compilation algorithm,
SySTeC, which accepts pointwise einsums with
symmetry-annotated tensors and produces symmetry-
optimized Finch tensor programs.

• Program: We benchmark on the SSYMV, SYPRD,
TTM, andMTTKRPKernels.We compare against naive
Finch, TACO, and SPLATT, all of which are included.
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• Compilation: We require Finch v0.6.32 and Julia
v1.10.4 to compile.

• Binary: We provide a Docker image
systec-artifact.tar with all dependencies
pre-installed, which requires ARM hardware to run
as it was built for Apple M2. If different hardware is
used, one can build the docker image for that hardware
using the provided instructions.

• Data set: Matrix datasets are downloaded automati-
cally from http://sparse.tamu.edu/.

• Run-time environment: The artifact requires a Unix
System (Mac or Linux).

• Hardware: We benchmark on an Intel Xeon CPU
E5-2680 v3 running at 2.50GHz, and our benchmarks
run well on Apple M2.

• Execution: We assume that TACO and SPLATT will
run in single-threaded mode.

• Metrics: We measure runtime of all methods we test.
• Output: The numerical output of each kernel is col-
lected and validated against comparison methods in
the script itself. The experiments themselves output
json files in the same subdirectory they run in. The
artifact includes instructions to plot the results.

• Experiments: We claim that our speedup results
should be within 1.5 of the expected, with few excep-
tions.

• How much disk space required (approximately)?:
4GB

• How much time is needed to prepare workflow
(approximately)?: The artifact can be set up quickly
with Docker, in around an hour. Building by hand also
takes less than an hour, but it may take longer if your
system needs special build flags.

• How much time is needed to complete exper-
iments (approximately)?: The experiments take
around an hour to run.

• Publicly available?: yes
• Code licenses (if publicly available)?: MIT
• Workflow framework used?: Docker
• Archived (provide DOI)?: Zenodo doi.org/10.5281/
zenodo.13377504

A.3 Description
A.3.1 How Delivered. There are multiple sources:

Download from Zenodo: doi.org/10.5281/zenodo.13377504
Download from Github: https://github.com/radha-patel/

symmetry-benchmarks/tree/systec-cgo-artifact
Disk space required: 4GB

A.3.2 Hardware Dependencies. These experiments re-
quire at least 24GB ofmemory and 4GB disk space. A network
connection is required to download the matrix datasets.
We benchmark on an Intel Xeon E5-2695 v2 @ 2.40GHz,

and our benchmarks run well on Apple M2.

A.3.3 Software Dependencies. A Unix (Mac or Linux)
system is required to run the artifact. ARM hardware is
required to use the pre-built docker image included with the
artifact, or one can build their own docker image or build
from source.

Dependencies whichmust be downloaded are documented
in Dockerfile:

• Julia v1.10.4
• coreutils
• cmake
• gcc
• g++
• python
• python3
• python3-pip
• python3-venv
• git
• libblas-dev
• liblapack-dev
• poetry

Dependencieswhich are built from sourcewith make deps:

• TACO https://github.com/tensor-compiler/taco/co
mmit/1278503a1c859d557174a4ef2ae7a85295f39f69

• SPLATT https://github.com/ShadenSmith/splatt/co
mmit/6cb86283c1fbfddcc67c2564e025691de4f784cf

Julia deps are also collected in a Project.toml file which
can be installed with julia setup.jl or just make env.

• ArgParse v1.2.0
• BenchmarkTools v1.5.0
• DataStructures v0.18.20
• Finch v0.6.32
• JSON v0.21.4
• MatrixDepot v1.0.13
• SparseArrays v1.10.0
• SySTeC v0.1.0 https://github.com/radha-patel/SyST
eC/commit/b0ec98927f0d2be01a61b48646cbadaa92
040b0f

• TensorMarket v0.2.0

Python deps are collected in a pyproject.toml file which
can be installed with poetry install --no-root or just
make env.

• python = v3.9
• matplotlib = v3.9.0
• packaging = v24.0
• numpy = v1.26.4

A.3.4 Data Sets. All matrix datasets are automatically
downloaded with a network connection from http://sparse.t
amu.edu/

The tensor datasets are randomly generated by the bench-
marks themselves.
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A.4 Installation
A.4.1 Docker. Installation is greatly simplified if you are
using the provided Docker image. First load the image with
docker image load systec-artifact.tar

or build it with
docker build -t systec-artifact .

Then, you can launch a shell in the container named
"evaluator-container" with
docker run -it --name evaluator systec-artifact

/bin/bash

Be sure to configure Docker to use enoughmemory (24GB)
and disk space (100 GB) for the experiments.

A.4.2 Manual. Once the basic dependencies are installed
on your system, you should be able to run make to build all
the necessary dependencies.
Should you need to customize the workflow, make deps

builds the dependencies, make env initializes Python and
Julia Environments, and make kernels builds the bench-
marking kernels.

A.5 Experiment Workflow
There are three main phases to the experiments:

A.5.1 Run SySTeC to Compile the Kernels. From the
toplevel directory, you can run the SySTeC compiler with
julia run_SySTeC.jl

This will compile all the kernels required for the experi-
ments and output them into the generated/ directory. The
script itself can be inspected and modified if you wish to
compile different kernels and compare the output code. The
SySTeC compiler itself is contained in
deps/SySTeC/src/SySTeC.jl.

A.5.2 Run the Experiements. You can run the experi-
ments with
sh run_benchmarks.sh

Benchmarks took us a little over an hour to run. The bench-
marks may be run individually with the individual com-
mands in the run_benchmarks.sh script. Results will be
generated in the toplevel directory. Corresponding reference
results used in the publication are available with the filename
suffix _reference.json.

A.5.3 Plot the Results. You can plot the results with
poetry run python plot_results.py

This will generate plots for whichever experiments you
have run and saved results for. The plots will be saved in the
charts/ directory. Corresponding reference results used
in the publication are available with the filename suffix
_reference.json.

A.6 Evaluation and Expected Result
You should expect to see similar results to the paper, no-
tably SSYMV (Figure 6), SYPRD (Figure 8), TTM (Figure
10), and MTTKRP (Figure 11). We expect that the more dra-
matic speedups will be seen in the MTTKRP benchmarks,
as the compiler is able to exploit the most symmetry in 5-
dimensional kernels. Note that we have reduced the size
of the tensors in TTM and MTTKRP to keep the runtime
and storage manageable, so these results may demonstrate
slightly less speedup as more time is spent on diagonal edge
cases.
If you are using our provided Docker image or using

Docker to run the experiments, you can view the charts
by copying them to the host.

docker cp evaluator:symmetry-benchmarks/charts .

A.7 Experiment Customization
The evaluator may optionally customize the kernel given to
SySTeC by modifying the run_SySTeC.jl script. The size of
the tensors in our TTM and MTTKRP experiments can be
changed by modifying the scripts directly.

A.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-
review-badging
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