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This paper introduces the continuous tensor abstraction, allowing indices to take real-number values (e.g.,
A[3.14]), and provides a continuous loop construct that iterates over the infinitely large set of real numbers.
This paper expands the existing tensor abstraction to include continuous tensors that exhibit a piecewise-
constant property, enabling the transformation of an infinite amount of computation into a finite amount.
Additionally, we present a new tensor format abstraction for storing continuous tensors and a code generation
technique that automatically generates kernels for the continuous tensor abstraction. Our approach introduces
a novel method for loop-level reasoning in domains like computational geometry and computer graphics,
traditionally unexplored in tensor programming models. Our approach demonstrates comparable performance
to hand-optimized kernels in leading libraries across diverse applications. Compared to hand-implemented
libraries on a CPU, our compiler-based implementation achieves an average speedup of 9.20× on 2D radius
search with ∼100× fewer lines of code (LoC), 1.22× on genomic interval overlapping queries (with ∼26× LoC
saving), and 1.69× on trilinear interpolation in Neural Radiance Field (with ∼9× LoC saving).

1 INTRODUCTION
Array programming has been a cornerstone in the history of computing, with its origin dating back
to FORTRAN’s introduction in 1957 [6]. It remains integral to imperative languages like C/C++ [53],
Java [5], Julia [10], and Python [50], as well as specialized array-focused languages including
APL [33], MATLAB [32], TensorFlow [1], and PyTorch [45]. This paradigm forms the basis for com-
piler analyses, polyhedral transformation [13], and loop vectorization [17, 36] aimed at optimizing
array-based programs. Array programming also plays a vital role in performance engineering,
employing techniques like loop tiling and reordering for enhanced software efficiency [48].
Array programming traditionally requires values at every integer coordinate, whereas recent

advancements in the sparse tensor programming model1 efficiently manage sparse data with values
at only a few specific integer coordinates. This innovation leverages the ineffectual computations
introduced by multiplication by zero (𝑎 ∗ 0 = 0) to boost program efficiency. Sparse tensor program-
ming excels in handling such data by exclusively processing non-zero points. Users can write sparse
tensor programs with a dense-like approach, simplifying sparse data management and maintaining
the illusion of working with large tensors. Specialized DSLs such as TACO [34], SparseTIR [59], and
Finch [2] facilitate this transition by optimizing sparse tensor formats and non-zero data processing,
all while using discrete integer indices. Dense tensors stored data at every integer grid point, but
sparse tensor programming eliminated this need by storing only relevant grid points. This work
goes further, removing the requirement for stored points to be integers.

Existing tensor programming models are well-suited for representing data at discrete integer grid
coordinates, making them a natural choice for operations like matrix multiplication. However, they
face challenges in handling domains dealing with continuous data which do not seamlessly fit into
the current tensor programming model. For instance, writing programs in fields like computational
geometry and computer graphics becomes challenging because programmers cannot find a direct
1Currently, the term ’tensor programming’ is often used interchangeablywith ’array programming’, where ’tensor’ essentially
denotes a multidimensional array. For the remainder of this paper, we will adopt the term ’tensor programming’.

Authors’ addresses: Jaeyeon Won, jaeyeon@mit.edu, MIT CSAIL, Cambridge, MA, USA; Willow Ahrens, wahrens@mit.edu,
MIT CSAIL, Cambridge, MA, USA; Joel S. Emer, emer@csail.mit.edu, MIT CSAIL / NVIDIA, Cambridge, MA, USA; Saman
Amarasinghe, saman@csail.mit.edu, MIT CSAIL, Cambridge, MA, USA.

, Vol. 1, No. 1, Article . Publication date: July 2024.

ar
X

iv
:2

40
7.

01
74

2v
1 

 [
cs

.P
L

] 
 1

 J
ul

 2
02

4



2

way to map geometries into array data structures. Consequently, they have devised myriad formats
for these domains, such as interval trees [46] and Bounding Volume Hierarchies [35], to efficiently
store and iterate over geometries. This requires complex data structures and even more complicated
control flow structures than the straightforward loop nest structures and simple indexed tensors.

2D Continuous Tensor A
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count = 0
for dx=-1.7:1.7 # continuous
for dy=-1.7:1.7 # continuous
if dx*dx+dy*dy <= 1.7*1.7
count += A[2.2+dx,3.9+dy]

# count = 3

Fig. 1. Radius search query in con-
tinuous tensor abstraction.

In this paper, we expand the boundaries of the tensor program-
ming model by extending coordinate points from finite ranges
of integers to the infinite realm of real numbers. This expansion
allows data points to have real numbered coordinates, offering
a wide range of new possibilities. Users can access tensors using
real-numbered indices (e.g., A[3.14]) and iterate through them
via a continuous for loop (e.g., for i = 0.0:3.14; B[i] =
A[i]). In the Figure 1, we present a 2D radius search query that
counts the number of points in A within a distance of 1.7 from
(2.2, 3.9), expressed using the continuous tensor abstraction. The
syntax aligns with the ubiquitous tensor programming model,
but now the for loop iterates continuously over the real number
domain. This query serves as a commonly employed operation
in applications such as spatial databases or geometric programs.
Remarkably, our implementation requires ∼100× fewer lines of
code and performs better compared to the manually-written li-
brary [26], underscoring its brevity and efficiency.
Using a piecewise-constant assumption, we introduce novel

methods for storing continuous tensors in memory, evaluating reduction operations in continuous
loops (for i = 0.0:3.14; sum += A[i]), and generating efficient code for continuous tensor
programs.We believe that the continuous tensor abstractionmarks a new era of loop-level reasoning,
offering the potential to unify diverse applications across various domains that were unexplored in
traditional tensor programming models.
To the best of our knowledge, this paper is the first to extend tensor programming to real-

numbered indices with continuous loops. In addition, this paper includes the following contri-
butions:

• We show how to iterate over continuous tensors with loops.
• We demonstrate how to represent an infinite number of values in a continuous tensor under
the piecewise-constant assumption.

• We introduce reduction operations specifically designed for the continuous loop.
• We introduce an efficient code generation mechanism for continuous loops by extending the
fibertree abstraction [54] and Finch [4].

• We show how to use a number type reflecting the infinitesimal number 𝜖 , Limit, to implement
the inclusiveness of intervals.

• We unify a diverse range of applications across various fields using the continuous tensor
abstraction, including bioinformatics, geospatial applications, point cloud processing, and
Neural Radiance Fields (NeRF). Writing applications in the continuous tensor abstraction is
straightforward and intuitive, requiring ∼26× fewer lines of code in bioinformatics, ∼100×
fewer lines of code in geospatial queries, ∼145× fewer lines of code in 3D point cloud
convolution, and ∼9× fewer lines of code in trilinear interpolation in NeRF.

• Compared to hand-implemented libraries, our compiler-based implementation achieves an
average speedup of 9.20× on radius search queries, 1.22× on genomic interval overlapping
queries, and 1.69× on trilinear interpolation in NeRF.
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(a) Sparse vector 𝑥𝑖 and 𝑦𝑖 .
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(b) Physical storage of (a).

#loop iterates discretely
for i = 0:9

s += x[i] * y[i]
end # s = 44

(c) Dot product between sparse
vectors, 𝑠 =

∑
𝑖=0...9 𝑥𝑖 ∗ 𝑦𝑖 .

2.2 3.01.0 4.1 5.1

x[i] 1
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(d) Continuous vectors 𝑥𝑖 and 𝑦𝑖
with pinpoint coordinates.
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(e) Physical storage of (d).

#loop iterates continuously
for i = 0.0:9.0

s += x[i] * y[i]
end # s = 44

(f) Dot product between contin-
uous vectors.

2.2 31 4.1 5.1
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(g) Continuous vector 𝑥𝑖 and 𝑦𝑖
with interval coordinates.

val

right

left

ptr 0 2

1 4.1

3 5.1

1 2 val

right

left

ptr 0 1

2.2

3.8

3

(h) Physical storage of (g).

#loop iterates continuously
for i = 0.0:9.0

s += x[i] * y[i] * d(i)
end # s = 2.4

(i) Dot product between continu-
ous vectors, 𝑠 =

∫ 9.0
0.0 𝑥𝑖 ∗ 𝑦𝑖 ∗ 𝑑𝑖

Fig. 2. Motivating examples: (a,b,c) A dot product between two sparse vectors. (d,e,f) A dot product between
two continuous vectors with pinpoint coordinates. (g,h,i) A dot product between two continuous vectors
with interval coordinates. Non-colored coordinates (in the white region) in continuous vectors (d, g) have
values of zero. Our codes (f, i) give users the illusion of iterating over a continuous domain.

2 MOTIVATING EXAMPLES
In this section, we explain the fundamental design principles behind the continuous tensor

abstraction, clarified through illustrative examples. Our exploration begins with a common oper-
ation in the existing sparse tensor programming world: the dot product between sparse vectors
(𝑠 =

∑
𝑖 𝐴𝑖 ∗ 𝐵𝑖 ). We then make an extension of the dot product into the continuous domain.

Figure 2 illustrates this extension, depicting a dot product between sparse vectors on the top
(2a,2b,2c) and a dot product between continuous vectors within our continuous tensor abstraction
in the middle (2d,2e,2f). Notably, the syntax of the two versions of our dot product is identical, yet
their semantics differ. The for loop in 2c iterates over a discrete (integer) domain, while the for
loop in 2f traverses a continuous (real) domain. In 2d, the non-zero data is positioned at specific
spots (i = 1.0, 3.0, 4.1, 5.1 for x[i]) within the continuous domain. We term these specific spots
as pinpoint coordinates, and the corresponding continuous tensor is referred to as a pinpoint
tensor. Pinpoint tensors with real coordinates naturally extend existing sparse tensors into the
continuous domain. Their physical storage structures remain largely consistent, with the primary
distinction being the storing of real numbers in the crd array. Although there are infinitely many
real numbers between [0.0,9.0], the pinpoint coordinates where effectual computation takes place,
i.e., multiplication between non-zeros, are finite (e.g., i=3.0 and i=5.1). Let’s further extend this
concept to scenarios where data is situated within intervals, rather than at pinpoint coordinates.

Figures 2g, 2h, and 2i present another variation of a continuous dot product. The key distinction
in this example, in comparison to the previous one, lies in the placement of non-zero data at
interval coordinates. Within an interval, there are infinitely many pinpoint coordinates, making
it impractical to directly sum up the infinitely many values. In such cases, we define a reduction

, Vol. 1, No. 1, Article . Publication date: July 2024.



4

operation as an integral
∫
(indicated by d(i) in Figure 2i); 𝑠 =

∫ 9.0
0.0 𝑥𝑖 · 𝑦𝑖 · 𝑑𝑖 . This example can

be employed in temporal database queries, such as "What is the total duration during which both
hotel rooms 𝑥 and 𝑦 are booked within the time range [0.0, 9.0]?"

3 PIECEWISE-CONSTANT TENSOR
Naively iterating over a continuous domain is impossible as there are infinitely many real numbers.
To process an infinite amount of data and computation with finite resources, we introduce the
fundamental assumption within our abstraction.

All continuous tensors must satisfy a piecewise-constant property.

We say that a tensor A is a concrete data structure in memory whose value at index i can be
obtained by evaluating the program A[i]. Note that this definition does not preclude real-valued
indices. The values of our tensor A at each index i can be expressed as a mathematical function
𝑓 (𝑖) = A[i]. We say that a tensor is piecewise constant when its values are piecewise-constant
over 𝑖 , meaning that the value of a tensor can be expressed as 𝑓 (𝑥) = ∑

𝑛𝑉𝑛 ∗ ⟦𝑥 ∈ 𝐼𝑛⟧, where 𝐼𝑛
and𝑉𝑛 represent the interval and constant of the 𝑛th piece, respectively. ⟦𝑥⟧ is the Iverson bracket;
if 𝑥 is true, then ⟦𝑥⟧ = 1, otherwise ⟦𝑥⟧ = 0. In this definition, the intervals 𝐼𝑛 must satisfy two
rules:

R1 Intervals are pairwise disjoint (∀𝑛≠𝑚, 𝐼𝑛 ∩ 𝐼𝑚 = ∅).
R2 The union of intervals covers the entire real domain (

⋃
𝑛 𝐼𝑛 = R).

In Figure 2g, the value of a tensor 𝑥 [𝑖] is expressed as a piecewise-constant function 𝑓𝑥 (𝑖) =

0 ∗ ⟦𝑖 ∈ [−∞, 1)⟧ + 1 ∗ ⟦𝑖 ∈ [1, 3]⟧ + 0 ∗ ⟦𝑖 ∈ (3, 4.1)⟧ + 2 ∗ ⟦𝑖 ∈ [4.1, 5.1]⟧ + 0 ∗ ⟦𝑖 ∈ (5.1,∞)⟧ =


0 −∞ ≤ 𝑥 < 1
1 1 ≤ 𝑥 ≤ 3
0 3 < 𝑥 < 4.1
2 4.1 ≤ 𝑥 ≤ 5.1
0 5.1 < 𝑥 < ∞

Traditional tensors on the integer domain define a discrete realm of computation. A natural
extension of traditional tensors into the continuous domain is pinpoint tensors (Figure 2d) wherein
each non-zero value is anchored to a real coordinate. This can be further extended to interval
tensors (Figure 2g), where non-zero values span across continuous intervals. We categorize both
pinpoint and interval tensors as piecewise-constant tensors.
Def1 Apinpoint tensor can be represented as a piecewise-constant function 𝑓 (𝑥) = ∑

𝑛𝑉𝑛 · ⟦𝑥 ∈ 𝐼𝑛⟧,
subject to the condition that ∀𝑛 : 𝑉𝑛 ≠ 0 → |𝐼𝑛 | = 0, where every piece with a non-zero
value spans a closed interval with identical endpoints.

Def2 An interval tensor can be represented as a piecewise-constant function 𝑓 (𝑥) = ∑
𝑛𝑉𝑛 · ⟦𝑥 ∈ 𝐼𝑛⟧,

subject to the condition that ∃𝑛 : 𝑉𝑛 ≠ 0 → |𝐼𝑛 | > 0. In this representation, at least one
piece with a non-zero value spans an interval of length greater than zero.

While functions represent abstract mappings between mathematical sets, tensors are concrete
data structures in memory with well-designed implementations. While many numerical libraries
have been studied to support piecewise-constant functions [8, 28, 41], to the best of our knowledge,
this paper is the first to introduce the piecewise-constant property into the tensor programming
world. Furthermore, we can generate efficient code for continuous tensors. Since tensor program-
ming is already widespread and employs familiar paradigms, users can easily write programs and
explore diverse loop scheduling strategies for performance enhancement. Moreover, our abstraction
facilitates intuitive reasoning about programs that were previously challenging in traditional tensor
programming. We demonstrate the utility of piecewise-constant tensors in representing various
applications involving geometries or genomic operations in Section 8.
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4 CORE LANGUAGE
Our language maintains the common syntax of standard tensor and loop abstractions. Notably, this
work expands upon this syntax to enable loops over the continuous domain and access with real
indices. Specifically, we extend Finch’s language [4] to accommodate real indices. While Finch has
additional features, our focus in this paper remains on foundational syntax elements such as for,
if, let, and assignment (=, +=) statements, as well as tensor access (A[]) and index expressions.
Our program comprises imperfectly nested loops, with the restriction that it includes only a

single assignment statement (=,+=). This statement allows tensors to appear exclusively on either
the left-hand side or the right-hand side, but not both simultaneously. Within such a loop nest,
an assignment statement is enclosed by one or more for and if statements, defining the domain
where the function will be updated.

1 for i = -∞:∞
2 if Mask[i] # Pinpoint Tensor
3 for j = -∞:∞
4 Z[i] += A[i+j]*B[j]*d(j)

Fig. 3. Example Code. Contin-
uous loops colored in purple.

We represent the every continuous tensor A[i] as the piecewise-
constant function 𝑓𝐴 (𝑖). We define the semantics of continuous loops
by partitioning loops into constant regions. As a walkthrough exam-
ple in the next several sections, we will use the program in Figure 3,
which performs 1D convolution only on pinpoint regions specified
by Mask.

4.1 Validity of the program
We have identified that not all programs in our language are valid. Although the next few sections
define the semantics of a program precisely, we summarize here:

• A continuous loop is executable if, after partitioning the loop into a finite number of piecewise
regions, all expressions in each region must be rewritable to constant expressions with respect
to the loop index, or each region must have a width of 0 (representing a pinpoint [𝑥, 𝑥]).

We can draw several observations from this property. One implication is that:
1. Any index expression 𝑔(𝑖) used in tensor access A[g(i)] must have a well-defined inverse

function 𝑔−1 such that the intervals 𝑔−1 (𝐼𝑛) preserve piecewise properties (R1 and R2). Viola-
tion of this rule (e.g., A[𝑖2] or A[sin(𝑖)]) prevents the partitioning of the iteration space into a
finite number of disjoint regions.

Another implication is that
2. Index expressions outside of tensor access must be evaluated at a finite number of pinpoint

coordinates. Violation of this rule (e.g., for i = 0.0:10.0; A[i] += i; end) results in
evaluating index expressions over infinitely many pinpoints within a continuous loop.

We note the distinction between what could be executed in theory and in practice due to
the limitations of our term rewriting implementation. For example, for i = 0.0:10.0; if
i*i-2*i+1==0: A[i] = 1; end end) can theoretically be evaluated exclusively at a pinpoint
𝑖 = 1.0 but may result in evaluation over infinitely many pinpoints within a continuous loop if our
implementation cannot rewrite the equation to solve for the root.

4.2 Piecewise Loop Transformation
The primary challenge lies in converting the infinite iteration space into a finite one to execute on
hardware. The iteration space is a set of all index points that the loops traverse in the program.
This iteration space spans real numbers, constituting an infinite set where not every real index can
be enumerated. The iteration space of Figure 3 is defined as 𝐼𝑆 = {(𝑖, 𝑗) | − ∞ ≤ 𝑖, 𝑗 < ∞, 𝑖, 𝑗 ∈ R}.

We establish the program semantics by partitioning the iteration space into the smallest possible
number of disjoint regions, ensuring that all right-hand side accesses remain constant within each
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region. This process is formalized as the piecewise loop transformation, which allows us to
assign meaning to the continuous loop. To construct a region for each index 𝑖 , we compute the
intersection of every 𝑛-tuple in the Cartesian product over 𝑛 sets of pieces, where 𝑛 represents
the number of tensor dimensions accessed by index 𝑖 . This approach is valid for partitioning into
disjoint regions while covering the entire iteration space, as it guarantees that all pieces in input
tensors are already disjoint and cover the entire space, as defined by (R1) and (R2).
When handling an arbitrary index expression 𝑔(𝑖) accessing the tensor, we replace A[g(i)]

with a new access using the pure index A’[i]. The value of this new access can be expressed as a
piecewise function with a transformed interval 𝑔−1 (𝐼𝑛): 𝑓𝐴′ (𝑥) = ∑

𝑎𝑉
𝐴
𝑎 · ⟦𝑥 ∈ 𝑔−1 (𝐼𝐴𝑎 )⟧ where the

piecewise function of original access A[g(i)] is represented as 𝑓𝐴 (𝑔(𝑥)) =
∑

𝑎𝑉
𝐴
𝑎 · ⟦𝑔(𝑥) ∈ 𝐼𝐴𝑎 ⟧ .

1 for m = 0:n_Mask
2 for a = 0:n_A
3 for b = 0:n_B
4 # Disjoint loop partitioning.
5 # RHS access replaced with constants.
6 for i ∈ Mask.itvl[m]
7 if Mask.val[m]
8 for j ∈ (A.itvl[a]-i) ∩ B.itvl[b]
9 Z[i] += A.val[a]*B.val[b]*d(j)

Fig. 4. After piecewise loop transformation.
Continuous loops are colored in purple.

In cases where multiple indices access the same dimen-
sion, like A[i+j] in Figure 3, we prioritize the index (j) in
the deepest loop nest, as other indices (i) can be treated
as constants once evaluated in outer loops. Figure 4 il-
lustrates the partitioned iteration space of the example
program. Note that every right-hand side access is re-
placed with the constant value corresponding to its piece.
In line 8, we intersect two intervals 𝑔−1 (𝐼𝐴𝑎 ) ∩ 𝐼𝐵𝑏 that an
index 𝑗 accesses, where 𝑔−1 shifts an interval by 𝑖 .

4.3 Pinpoint Specialization
Even after substituting tensor accesses with constant values, index expressions such as A.itvl[a]-i
in line 8 of Figure 4 may still persist in the program, rendering them uncomputable within a
continuous loop. To address this issue, we further partition the disjoint regions according to
pinpoint tensors into two cases by its definition (Def1): (1) pinpoint coordinates with non-zero
values, and (2) interval coordinates with a value of zero.

1 for m = 0:n_Mask
2 for a = 0:n_A
3 for b = 0:n_B
4
5 if Mask.itvl[m] is pinpoint:
6 let i = Mask.itvl[m].left
7 if Mask.val[m]
8 for j ∈ (A.itvl[a]-i) ∩ B.itvl[b]
9 Z[i] += A.val[a]*B.val[b]*d(j)
10
11 # Can be dead code eliminated
12 elseif Mask.itvl[m] is interval:
13 for i ∈ Mask.itvl[m]
14 if 0 # Always false
15 for j ∈ (A.itvl[a]-i) ∩ B.itvl[b]
16 Z[i] += A.val[a]*B.val[b]*d(j)

Fig. 5. After pinpoint specialization on Mask,
the interval case can be eliminated as dead code.
Continuous loops are highlighted in purple.

In the pinpoint case, where the loop exclu-
sively contains pinpoint coordinates, we replace
the continuous loop with a let statement, en-
abling the evaluation of remaining index expres-
sions on a single pinpoint. Conversely, in the in-
terval case, we may able to dead-code eliminate
or zero-annihilate the continuous loops, hoping
that the program’s structure can facilitate the dele-
tion of continuous loops. Thus, the example pro-
gram would be transformed into Figure 5 after spe-
cializing over the pinpoint tensor Mask. The in-
terval case can be eliminated because the loop
body won’t execute due to a false if condi-
tion.

4.4 Converting Continuous Loops
For the remaining continuous loops, we categorize them based on the left-hand side (LHS) access
to the loop index. If the LHS includes the continuous loop index and each access statement follows
the format for i ∈ Interval; A[i] = constexpr with respect to i, we can eliminate the
continuous loop and substitute index with the corresponding ranges from the loops, assigning the
interval and constant of the output piece as A[Interval] = constexpr.
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Fig. 7. A sparse matrix with dimensions I and J, its fibertree abstraction and concrete representations.

On the other hand, if the LHS does not include the loop index, an important consideration arises
regarding reduction operations within a continuous domain, which requires careful attention to
the semantics of reduction operators. We introduce two distinct modes for the += operator within
our continuous tensor abstraction: summation (

∑
) and integration (

∫
).

Continuous summation (
∑
) mirrors traditional tensor programming models, aggregating values

from pinpoint coordinates during iteration. However, summation over intervals yields an infinite
value as there are infinitely many pinpoints. The integration (

∫
) mode is designed for interval

tensors, enabling integration across all values within an interval. This integration is essentially the
product of the right-hand side (RHS) value multiplied by the length of the interval, since the RHS
remains constant. Syntactically, our language distinguishes between two reduction modes based on
the presence or absence of d(i) in the expression, where i represents the loop index. We provide
further elaboration on implementation details and reduction operators beyond += in Section 7.

1 for m = 0:n_Mask
2 for a = 0:n_A
3 for b = 0:n_B
4 if Mask.itvl[m] is pinpoint
5 let i = Mask.itvl[m].left
6 if Mask.val[m]
7 Z[i] = A.val[a] * B.val[b] *
8 length((A.itvl[a]-i) ∩ B.itvl[b])

Fig. 6. After removing continuous loop based
on integration reduction: No continuous loops.

Figure 6 illustrates our final program by demonstrat-
ing the conversion of the last continuous loop into
integration reduction mode.
Although Figure 6 provides executable code, it still

includes numerous intervals involving redundant com-
putations. To mitigate this, we avoid traversing all tu-
plewise pieces (𝑂 (𝑛𝑀𝑎𝑠𝑘 ∗𝑛𝐴 ∗𝑛𝐵)), optimizing the pro-
gram’s efficiency in practice. In the remaining sections
of this paper, we will address two key implementation

challenges: (1) How to efficiently store continuous piecewise-constant tensors in memory (detailed
in Section 5), and (2) How to efficiently iterate over an infinite number of real indices using a con-
tinuous loop (detailed in Sections 6 and 7). In Section 8, we further illustrate how this assumption’s
versatility extends to modeling a wide range of applications within an infinite space.

5 CONTINUOUS TENSOR STORAGE
5.1 Background on fibertrees
This subsection provides background information on a format abstraction that provides an approach
to storing traditional dense/sparse tensors inmemory. Some of these abstractions are grounded in the
coordinate tree concept, which was initially introduced in the context of the format abstraction [18]
within TACO and subsequently refined and formalized as the fibertree abstraction [54].

Figure 7 illustrates how the fibertree abstraction depicts a 2D matrix. A tensor is characterized as
a multidimensional array with N ranks (dimensions). The fibertree abstraction envisions a tensor as
a tree structure, where each level corresponds to a specific rank in the tensor. Each level comprises
one or more fibers, representing sets of elements that share coordinates in the higher levels of the
tree. Elements in a fiber are coordinate/payload pairs, with the payload taking the form of either a
(sub)fiber at the next level or a value located at the leaf of the tree. The order of the levels signifies
the data layout, such as row-major or column-major.
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(a) Visualization of tensor A.
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interval-typed coordinates.

val

right

left

ptr 0 3

1 2 3

0
(Limit(0,0))

2
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(c) Concrete representation.

Fig. 8. fibertree with an interval-typed coordinate of piecewise-constant continuous tensor A

Name Notation Definition Treated as Implemented as
Closed interval [𝑎,𝑏 ] {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏} [𝑎,𝑏 ] [Limit(a,0), Limit(b,0)]
Right half-open interval [𝑎,𝑏 ) {𝑥 ∈ R | 𝑎 ≤ 𝑥 < 𝑏} [𝑎,𝑏 − 𝜖 ] [Limit(a,0), Limit(b,-1)]
Left half-open interval (𝑎,𝑏 ] {𝑥 ∈ R | 𝑎 < 𝑥 ≤ 𝑏} [𝑎 + 𝜖,𝑏 ] [Limit(a,+1), Limit(b,0)]
Open interval (𝑎,𝑏 ) {𝑥 ∈ R | 𝑎 < 𝑥 < 𝑏} [𝑎 + 𝜖,𝑏 − 𝜖 ] [Limit(a,+1), Limit(b,-1)]

Table 1. Four inclusiveness types of intervals. In our implementation, we treat these as a single closed interval
representation with the use of the infinitesimal number 𝜖 stored in Limit type.

A level format defines the physical storage used to store the fibers at that level. The two most
prevalent level formats for integer coordinates are the Uncompressed and Compressed level formats.
The Uncompressed level format encodes a dense integer coordinate interval within the range of
[0, N). In contrast, the Compressed level format exclusively encodes non-zero integer coordinates
within the fiber by explicitly storing their coordinates. In Figure 7 (right), the concrete representation
denotes that the matrix is stored in the 𝐼 → 𝐽 layout (row-major), with level formats assigned
as Uncompressed for 𝐼 and Compressed for 𝐽 . This specific representation corresponds to the
Compressed Sparse Row (CSR) format. For a more detailed explanation of fibertrees, refer to [43, 54].

5.2 Interval Coordinates in fibertrees
We introduce interval-typed coordinates in a fibertree to effectively capture piecewise-constant
properties. Figure 8 illustrates an interval-typed fibertree for a continuous tensor A. Pinpoint
coordinates are a special case, treated as intervals with both endpoints equal, collapsing to a single
point; a pinpoint coordinate 2 is equivalent to the closed interval [2,2], as depicted in Figure 8b.
We account for the inclusiveness (open or closed) of each endpoint within the interval type, leading
to four distinct interval subtypes. Similar to how traditional level formats operate on fibers with
integer coordinates, we designed several level formats for fibers with interval coordinates.

5.3 Limit: A Number Type to Represent Inclusiveness of Endpoints with 𝜖.
To represent the four distinct inclusiveness categories for intervals, we propose a new number
type Limit to encode interval endpoints. The Limit type integrates the concept of an infinitesimal
number, denoted as 𝜖 , which is smaller than any standard positive real number but nonzero in size.
This allows us to treat all intervals as closed, regardless of inclusiveness, as we can emulate an open
endpoint with a closed interval by adding or subtracting 𝜖 as appropriate, as shown in Table 1.
Figure 9 depicts the definition of Limit and arithmetic operations implemented using this

numeric type. Limit serves as an augmented number type for real numbers, essentially a struct
comprising a regular numerical value (val::T) and the infinitesimal value (eps::Int8). Note that
𝜖 is not to be confused with machine epsilon in floating point representations. While real numbers
∈ R are infinite and continuous, computer number systems are finite and discrete. Consequently,
representation errors, leading to roundoff errors, are inherent in computer number systems.

In Figure 8c, we present a concrete representation of the fibertree with interval coordinates, en-
capsulating the number and inclusiveness pair using the Limit type. This representation stores each
endpoint within the left and right arrays, assuming closed intervals for all interval coordinates.
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1 # Definition of Limit.
2 struct Limit{T}
3 val::T
4 eps::Int8 # (+𝜖, 0, -𝜖) = (+1, 0, -1)
5 end
6
7 # Operations between two Limits.
8 (+)(x::Limit, y::Limit)::Limit = Limit(x.val + y.val, min(max(x.eps + y.eps, -1), +1))
9 (-)(x::Limit, y::Limit)::Limit = Limit(x.val - y.val, min(max(x.eps - y.eps, -1), +1))
10 (<)(x::Limit, y::Limit)::Bool = x.val < y.val || (x.val == y.val && x.eps < y.eps)
11 (<=)(x::Limit, y::Limit)::Bool = x.val < y.val || (x.val == y.val && x.eps <= y.eps)
12 (==)(x::Limit, y::Limit)::Bool = x.val == y.val && x.eps == y.eps
13
14 # Operations between normal number and Limit.
15 numeric_types = [Int8, Int16, Int32, Int64, Float32, Float64]
16 for S in numeric_types
17 (+)(x::Limit, y::S)::Limit = x + Limit(y, 0)
18 (-)(x::Limit, y::S)::Limit = x - Limit(y, 0)
19 (<)(x::Limit, y::S)::Bool = x < Limit(y, 0)
20 (<=)(x::Limit, y::S)::Bool = x <= Limit(y, 0)
21 (==)(x::Limit, y::S)::Bool = x == Limit(y, 0)
22 end

Fig. 9. Implementation of Limit type. Infinitesimal number is represented by eps field stored in Int8 type.
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(a) Visualization of
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(c) Concrete representa-
tion with overlapping.
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1 2 3
2-ε 3-ε 4-ε

ptrx
leftx
rightx

0 1 3 4ptry
lefty
righty

val

3 1 3 1
4-ε 2-ε 4-ε 2-ε
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(d) Concrete representation
with nonoverlapping.

Fig. 10. (b) fibertree representation of a 2D continuous tensor 𝐴𝑥,𝑦 . (c) The level format on dimension 𝑥
allows overlapping intervals ([1,3) and [2,4)). (d) Dimension 𝑥 is stored in a non-overlapping manner.

Our compilation process generates a code for interval arithmetics, such as interval intersection, at
a symbolic level. When executing the generated code, all interval arithmetics are performed on the
Limit{T} type, which can introduce numeric rounding errors. Our Limit{T} type is designed to
accommodate various numeric types T, such as Limit{Float64}, to encode endpoints of intervals.
The choice of an appropriate numeric type T (e.g Float32 and BigFloat for arbitrary-precision)
depends on the desired precision for the application. This flexibility allows users to choose the
most suitable computer number system for their specific applications. To ensure a fair comparison,
we used the same numeric type for real indices as each baseline in the case studies (Section 8).

5.4 Overlap and Ordering of Intervals.
Overlapping Intervals. When considering the concrete representation of piecewise-constant
tensors, it’s essential to account for the potential existence of overlapping intervals. While overlap
is not a major concern in the 1D case, it becomes a significant consideration in multi-dimensional
piecewise-constant tensors.
Figure 10a provides a visual depiction of a 2D continuous tensor, denoted as 𝐴𝑥,𝑦 , comprising

two distinct pieces, each defined within box-shaped ranges. Figures 10c and 10d show two different
concrete representations originating from the same fibertree, with a specified level order of 𝑥 →
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Limit level format Homogeneous level format Pinpoint lvlformat Regular level format

N/A N/A N/A

N/A

0 1 2 3 4

0.6 2.5

0 1 2 3 4

right

left 0
Limit(0,0)

2
Limit(2,0)

3+ε
Limit(3,1)

1-ε
Limit(1,-1)

2
Limit(2,0)

4-ε
Limit(4,-1)

right

left 0.6
Limit(0.6,0)

2.5
Limit(2.5,0)

0.6
Limit(0.6,0)

2.5
Limit(2.5,0)

right

left 0
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left 0.6 2.5
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lclose True

rclose True

right

left 0 2 3

1 3 4

lclose True

rclose False

crd 0.6 2.5

x 0 2 3

x=0 2 3
stride 1 len 1

lclose True rcloseFalse

x 0.62.5

stride 1 len 0

lclose True rclose True

Tensor A

Tensor B

Tensor C

Fig. 11. Level formats across three distinct 1D continuous tensors.

𝑦. It’s important to note that, although the concrete representations in 10c and 10d differ, the
two fibertrees in 10b are semantically equivalent. We’ve represented them differently for visual
clarity and ease of understanding. The choice of level format applied to rank 𝑥 distinguishes these
representations. In 10c, the level format allows intervals in dimension 𝑥 to overlap in memory
([1,3) and [2,4)), whereas in 10d, overlap is not permitted, resulting in disjoint intervals ([1,2),
[2,3), and [3,4)). Permitting overlapping intervals offers advantages in terms of memory space
conservation. However, when achieving a continuous loop along rank 𝑥 , the generated code
becomes more complex compared to iterating over a non-overlapping representation. Figures 10c
and 10d are valid representations, but our current compiler only accepts non-overlapping level
formats.

Ordered Intervals. A level format is ordered if the intervals within a fiber are stored in a specific
order. The endpoints of intervals can be ordered in one of three ways: (1) sorted by the left endpoint,
(2) sorted by the right endpoint, or (3) sorted lexicographically by both. Note that when a level is
not overlapped, these three orders result in identical representations. Our compiler implementation
currently only accepts ordered levels and does not support unordered ones.

5.5 Optimized Representation
This subsection outlines optimized representations for storing tensors with specific patterns,
including pinpoint coordinates, intervals with consistent inclusiveness, and regular intervals. Such
patterns allow fibers to be represented with alternative level formats, resulting in notable benefits
in terms of memory efficiency and the complexity of the generated code. Figure 11 shows three
tensors stored in various level formats. Depending on the pattern, certain tensors can benefit from
a more optimized representation than storing every endpoint in the Limit type.

Homogeneous Intervals. The need to store pairs of (number, inclusiveness) for every endpoint
may vary, depending on the inclusiveness of these intervals. When all intervals within a level share
the same inclusiveness, we refer to them as homogeneous intervals. Conversely, when intervals
have inconsistent inclusiveness, they are categorized as heterogeneous intervals. Tensor B and C in
Figure 11 are homogeneous but a tensor A is heterogeneous. In the case of homogeneous intervals,
there is no need to store every endpoint in the Limit type. Instead, the level format can store
endpoints in regular numeric types while keeping inclusiveness details separate, as illustrated in
lclose and rclose in Figure 11.
Pinpoint Coordinates. If the level only comprises pinpoint coordinates, there is no need to

store both endpoints for each coordinate, as they share the same endpoints. Instead, pinpoints can
be stored as single coordinates using the regular number type, as depicted in Tensor B in Figure 11.
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1 1 2 3 4

Phase(stop = 3.1-ε,
body = Run(0))

Sequence Stepper

3.1 4.2

Phase(stop = 4.2,
body = Run(1))

Phase(stop = +Inf,
body = Run(0))

+Inf-Inf 3.2 4.31.1 2.30

Phase(1.1-ε,
Run(1))

Phase(2.3-ε,
Run(2))

Phase(3.2-ε,
Run(3))

Phase(4.3-ε,
Run(4))

+Inf-Inf

Phase(-ε,
Run(0))

Phase(+Inf,
Run(0))

Sequence

Fig. 12. Describing a pattern with Looplets: Single interval on the left, densely packed intervals on the right.

Regular Intervals. A set of intervals is considered regular if all endpoints of intervals in the
set satisfy a specific relation: [𝑠𝑡𝑟𝑖𝑑𝑒 · 𝑥, 𝑠𝑡𝑟𝑖𝑑𝑒 · 𝑥 + 𝑙𝑒𝑛) where 𝑠𝑡𝑟𝑖𝑑𝑒 and 𝑙𝑒𝑛 are constants. Such
patterns are commonly used, for example, in a uniform grid or 3D voxels. The far-right column in
Figure 11 illustrates how we can optimize the representation for such regular intervals in tensors
B and C. In tensor C, all intervals have the same length and are distributed regularly, precisely
represented by the right half-open interval [1 · 𝑥, 1 · 𝑥 + 1). Pinpoint coordinates in tensor B can
also be represented in a regular level format, as all pinpoints can be expressed using the closed
interval [1 · 𝑥, 1 · 𝑥 + 0]. For regular intervals, we can store only an array of 𝑥 with metadata instead
of storing all endpoints.

6 LOOPLETS
In this section, we provide background information on Looplets, which serve as the core intermediate
representation for code generation in the Finch compiler [2]. While fibertrees describe tensors
as a tree of ranks, Looplets describe each fiber in a rank as a tree of ranges. The hierarchical
decomposition allows the compiler to resolve interactions between different structures, such as
banded matrices, run-length encoded images, or most critically, pinpoint levels and interval levels.
For example, one such interaction is an intersection. Looplets provide a mechanism for interpreting
the concrete memory representation as the full tensor (i.e. including zeros). The compiler uses
progressive lowering to traverse and interact tensors with each other as represented by Looplets.
Repeated rewriting and optimization passes at each step accounts for mathematical properties such
as sparsity.

6.1 Background on Looplets
Although Looplets were originally conceived within the integer domain, extending the concept to
the continuous domain is a natural transition that requires little alteration. The following provides
background information on four core types of Looplets designed for describing value patterns,
enabling precise descriptions of continuous patterns:

• Run : The Run Looplet describes a run of the same payload (scalars or subfibers).
• Sequence : The Sequence Looplet concatenates a constant number of child Looplets, en-
abling the creation of intricate patterns by joining multiple Looplets together. Sequences are
analogous to blocks of code, with each child Looplet a statement in the block.

• Stepper : The Stepper Looplet concatenates a variable number of instances of the same child
Looplet, allowing for more complex repetitive patterns. Steppers are analogous to for-loops,
where the child looplet is the body of the loop.

• Phase : The Phase Looplet indicates the range spanned by a child Looplet, used to indicate
the boundaries imposed by Steppers and Sequences.

To aid in understanding Looplets, one can draw connections between Looplets and Regular
Expressions (Regex). In this analogy, a Run Looplet corresponds to a character in Regex, a Sequence
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Looplet corresponds to Regex concatenation (𝑅𝑆) of subRegex 𝑅 and 𝑆 , and a Stepper Looplet
corresponds to the Kleene star 𝑅∗ in Regex, allowing for a more intuitive grasp of the Looplets.

6.2 Describing Continuous Tensors with Looplets
Figure 12 illustrates two examples of pattern descriptions when Looplets are applied to the con-
tinuous domain. In the left figure, you can see a piece-wise constant vector with a single interval.
The Looplets divide the entire space into three chunks: runs of zero, runs of one, and runs of zero.
Each run is wrapped by a Phase Looplet, indicating the range it spans. Then, a Sequence Looplet
concatenates these three child Looplets, creating the desired pattern. In the right figure, we have a
pattern where uniform intervals are tightly distributed. To capture the repeating non-zero intervals,
a Stepper Looplet is employed. The Sequence Looplet is then used to concatenate a phase of zero,
the Stepper Looplet, and another phase of zero, forming the complete pattern.

Looplets must represent all tensor values, not just the stored or nonzero ones. This is because even
zero regions of the tensor may interact with programs or tensors to affect the output. Since Looplets
must cover the entire space completely, continuous looplets may need to use an infinitesimal value
𝜖 to define continuous intervals with open endpoints. This implies that the range of intervals filled
with zeros (depicted in gray) begins and ends at points infinitesimally close to the boundaries of
non-zero intervals (depicted in blue). For example, in the left figure, the leftmost zero interval
terminates at 3.1 − 𝜖, which is slightly before the start of the adjacent non-zero interval.

We complete the description of our continuous tensor formats by representing each level format
with Looplets. In Figure 13, we present a step-by-step process of how our abstraction interprets a
2D continuous tensor as a fibertree, level format, and Looplet nest. In this case, the 2D continuous
tensor 𝐴𝑥,𝑦 features pinpoint coordinates on rank 𝑦 and interval coordinates on rank 𝑥 , with the
fibertree’s layout structured as 𝑦 → 𝑥 . Figure 13a visually demonstrates the derivation of the
concrete representation by applying a level format for each rank in the fibertree.

Actual Looplets need to include user-specified iteration code in order to relate concrete memory
to theoretical representations. Figure 13b presents the complete Looplet nest for rank 𝑦. The color
coding corresponds to the rank 𝑦 in the visualization in left of Figure 13a. It begins by taking a pos
as input, representing the position of the parent fiber (Root), which is always zero. Each field within
the Looplet is populated with the concrete representation of rank 𝑦. Notably, a stepper contains
two additional fields aside from the body, namely, seek (Line 6) and next (Line 15). The seek field
initializes variables for a starting index ’j’, while the next field advances the state to the next
Looplet within the stepper. It’s essential to observe that, as rank 𝑦 comprises pinpoint coordinates,
the stopping point of the first phase in the sequence (Line 10) is adjusted by subtracting 𝜖 from
the pinpoint coordinate crd[p]. Similarly, Figure 13c defines the Looplet for interval patterns on
rank 𝑥 , completing the level description for this rank. In summary, the compiler uses Looplets to
interpret concrete memory representations in each level as complete tensors.

7 CODE GENERATION
In this section, we describe how our compiler transforms continuous loops into efficient and exe-
cutable code. Our compiler is built upon Finch [2], which was originally designed for sparse tensor
computations in the integer domain using Looplets. We provide insight into Finch’s background
and detail the adaptations we made to extend its capabilities into the continuous domain. Our
compiler takes two key inputs: (1) a user’s code2 written using continuous tensor abstractions, and
(2) Looplet descriptions for each tensor. With these inputs, the compiler generates executable Julia
code. A key aspect of compiler is the mechanism for lowering the Looplet on a loop.

2We use Finch’s input tensor programming language as described in [4]
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(a) (1) 2D continuous tensor 𝐴𝑥,𝑦 and its Looplets, (2) its fibertree, and (3) concrete representation.

1 # pos = position of Root fiber (0)
2 Sequence(
3 Phase(
4 stop = crd[ptr[pos+1]-1],
5 body = Stepper(
6 seek(j) = (p = search(j, crd,
7 ptr[pos], ptr[pos+1])),
8 body = Sequence(
9 Phase(
10 stop = crd[p]-𝜖,
11 body = Run(0)),
12 Phase( # pinpoint [crd[p],crd[p]]
13 stop = crd[p],
14 body = Run(getPayload(p)))),
15 next = (p += 1))),
16 Phase(
17 stop = +Inf,
18 body = Run(0)))

(b)Rank y : Looplets of a pinpoint level on
a concrete representation using crd array.
The color coding corresponds to the rank y
in the visualization in left of (a)-(1).

1 # pos = position of fiber on Rank x
2 Sequence(
3 Phase(
4 stop = right[ptr[pos+1]-1],
5 body = Stepper(
6 seek(j) = (p = search(j, right,
7 ptr[pos], ptr[pos+1])),
8 body = Sequence(
9 Phase(
10 stop = left[p]-𝜖,
11 body = Run(0)),
12 Phase( # interval [left[p],right[p]]
13 stop = right[p],
14 body = Run(val[p]))),
15 next = (p += 1))),
16 Phase(
17 stop = +Inf,
18 body = Run(0)))

(c) Rank x : Looplets of a interval level on a
concrete representation using left and right
array. The color coding corresponds to the rank
x in the visualization in top of (a)-(1).

Fig. 13. Example on 2D continuous tensor storage. (a) A concrete representation derived from fibertree using
level formats. (b,c) Complete Looplets description on rank 𝑦 and 𝑥 using their concrete representations above.

7.1 Compiler Pass for Looplets
Background. In Finch, each Looplet type defined within a for loop statement is lowered by a
corresponding compiler pass. Most of the compiler passes can be applied to continuous Looplets
without modification, with the exception of the Stepper. Figure 14 provides background information
through a visualization of how each pass reduces the Looplets within a continuous loop.

• Phase : This pass lowers continuous loops associated with Phase Looplets (Figure 14a, 14b,
and 14c). It intersects Phase ranges with the loop’s range, generating code to check for
intersections with a length ≥ 0 (Lines 3-4 in Figure 14c). Our compiler emits symbolic
expressions of intersection with max and min, though we’ve used ∩ for brevity (lines 1-2).

• Run : This pass lowers Run Looplets, as illustrated in Figure 14d, 14e, and 14f. In this case,
the Run Looplet is essentially replaced with a constant scalar value.

• Sequence : This pass lowers the continuous loop associated with Sequence Looplets, concate-
nating multiple child Phases. As the Sequence’s exact range is determined at runtime, this pass
generates all feasible combinations of child Phases within each Sequence. In Figure 14g, 14h,
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PhaseA

PhaseB rangeB

[st,en]
For loop

Intersect

rangeA

(a) Phase: Visualization.

# bodyA/B = child Looplet
A = Phase(rangeA, bodyA)
B = Phase(rangeB, bodyB)
for i = st:en
s += A[i] * B[i]

(b) Phase: Source program.

1 # A ∩ B = [max(A.start, B.start),
2 # min(A.stop, B.stop)]
3 intersect = [st,en] ∩ rangeA ∩ rangeB
4 if intersect.start <= intersect.stop
5 for i = intersect.start:intersect.stop
6 s += bodyA[i] * bodyB[i]

(c) Phase: Lowered program.

RunA

RunB

[st,en]
For loop

(d) Run: Visualization

A = Run(scalarA)
B = Run(scalarB)
for i = st:en
s += A[i] * B[i]

(e) Run: Source program.

1 for i = st:en
2 s += scalarA * scalarB

(f) Run: Lowered program.

SeqA

SeqB B1

[st,en]
For loop

A2A1

B2

(g) Sequence: Visualiza-
tion.

A = Sequence(PhaseA1, PhaseA2)
B = Sequence(PhaseB1, PhaseB2)
for i = st:en
s += A[i] * B[i]

(h) Sequence: Source program.

1 for i = st:en
2 s += PhaseA1[i] * PhaseB1[i]
3 for i = st:en
4 s += PhaseA1[i] * PhaseB2[i]
5 for i = st:en
6 s += PhaseA2[i] * PhaseB1[i]
7 for i = st:en
8 s += PhaseA2[i] * PhaseB2[i]

(i) Sequence: Lowered program.

StepperA

StepperB

[st,en]
For loop

bodyB after 
seekB

nextB

bodyA after seekA nextA

(j) Stepper: Visualization.

A = Stepper(seekA,bodyA,nextA)
B = Stepper(seekB,bodyB,nextB)
for i = st:en
s += A[i] * B[i]

(k) Stepper: Source program.

1 call seekA(st) # find bodyA contains st
2 call seekB(st) # find bodyB contains st
3 i = st
4 while i <= en
5 curr = [i,en] ∩ bodyA.range ∩ bodyB.range
6 for i2 = curr.start:curr.stop
7 s += bodyA[i2] * bodyB[i2]
8 if (curr.stop==bodyA.stop) call nextA
9 if (curr.stop==bodyB.stop) call nextB
10 i = curr.stop + 𝜖
11 end

(l) Stepper: Lowered program.

Fig. 14. Compiler Pass for Looplets. Continuous loops are highlighted in purple. Non-purple code in right
represents generated Julia code. The compiler recursively lowers nested Looplets until no purple code remains.

and 14i, both tensor A and B have two Phases, resulting in optimized code for all four possible
pairs, e.g., (A1, B1), (A1, B2), (A2, B1), (A2, B2).

• Stepper : This pass lowers Stepper Looplets, which repeat the child Looplet pattern step
by step. Each Stepper maintains a current body Looplet and performs computations on the
intersected range. It then advances to the next body Looplet when the current one is complete.
Figure 14j, 14k, and 14l illustrate this process. The seek field contains code to fast-forward the
stepper to the first body containing the start (st) of the for loop range (Lines 1-2 in Figure 14l).
The while loop continues until it reaches the end (en) of the continuous for loop where the
variable i tracks the current start (Lines 3-4). Within the loop, computations occur in the
intersected range between current bodies (Lines 5-7). When the current body is complete, the
Stepper advances to the next body (Lines 8-9). Finally, i, indicating the next starting point, is
set to the end of the intersected region (curr.stop) incremented by 𝜖 (Line 10).

The process of compiling continuous loops into executable code entails a recursive lowering of
these loops until none of them are present in the code (i.e., until there is no purple code in Figure 14).
A specific compiler pass is selected based on the type of Looplet, with a focus on lowering the
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Va

La Ra-Inf

0 Vb

Lb Rb-Inf

0

Vector a Vector b

(a) Visualization.

1 a = Sequence(Phase(La-𝜖, Run(0)),
2 Phase(Ra, Run(Va)))
3 b = Sequence(Phase(Lb-𝜖, Run(0)),
4 Phase(Rb, Run(Vb)))
5 for i = st:en
6 s += a[i] * b[i] * d(i)

(b) Continuous Loop: 𝑠 =
∫ 𝑒𝑛

𝑠𝑡
𝑎𝑖 ∗𝑏𝑖 ∗𝑑𝑖

1 A1B1 = [st,en] ∩ [-∞,La-𝜖] ∩ [-∞,Lb-𝜖]
2 if A1B1.start <= A1B1.stop
3 for i = A1B1.start:A1B1.stop
4 s += 0 * 0 * d(i)
5 A1B2 = [st,en] ∩ [-∞,La-𝜖] ∩ [Lb,Rb]
6 if A1B2.start <= A1B2.stop
7 for i = A1B2.start:A1B2.stop
8 s += 0 * Vb * d(i)
9 A2B1 = [st,en] ∩ [La,Ra] ∩ [-∞,Lb-𝜖]
10 if A2B1.start <= A2B1.stop
11 for i = A2B1.start:A2B1.stop
12 s += Va * 0 * d(i)
13 A2B2 = [st,en] ∩ [La,Ra] ∩ [Lb,Rb]
14 if A2B2.start <= A2B2.stop
15 for i = A2B2.start:A2B2.stop
16 s += Va * Vb * d(i)

(c) Code after Sequence and Phase Pass.

1 A1B1 = [st,en] ∩ [-∞,La-𝜖] ∩ [-∞,Lb-𝜖]
2 block() #Empty
3
4 A1B2 = [st,en] ∩ [-∞,La-𝜖] ∩ [Lb,Rb]
5 block() #Empty
6
7 A2B1 = [st,en] ∩ [La,Ra] ∩ [-∞,Lb-𝜖]
8 block() #Empty
9
10 A2B2 = [st,en] ∩ [La,Ra] ∩ [Lb,Rb]
11 if A2B2.start <= A2B2.stop
12 for i = A2B2.start:A2B2.stop
13 s += Va * Vb * d(i)

(d) Code after Simplify Pass.

Fig. 16. Code after undergoing multiple compiler passes is depicted below. Continuous loops are highlighted
in purple, while the remaining non-purple code represents generated Julia code.

outermost Looplet when nested Looplets are involved. In scenarios where different tensors feature
varying outermost Looplet types, tiebreaking rules establish the priority order as Run > Phase >
Sequence > Stepper. Any Looplets that remain unprocessed are deferred for subsequent passes.
Extending Looplet lowering to Continuous Space.While most of the Looplet passes were

already compatible with continuous loops, a minor adjustment was made in the Stepper pass,
where we set i = curr.stop + 𝜖 instead of the integer domain’s i = curr.stop + 1. This 𝜖
is essentially implemented as Limit(0, Int8(1)) in Figure 9. This increment changes a closed
ending point to an open starting point, and vice-versa.

7.2 Compiler Pass for Simplifying Program

+(a..., 0, b...) => +(a..., b...)
*(a..., 1, b...) => *(a..., b...)
&&(a..., true, b...) => &&(a..., b...)
||(a..., false, b...) => ||(a..., b...)
a[i...] += 0 => block()
a[i...] *= 1 => block()
a[i...] &= true => block()
a[i...] |= false => block()

*(a..., 0, b...) => 0
&&(a..., false, b...) => false
||(a..., true, b...) => true

if(true, a) => a
if(false, a) => block()
for i=st:en; block() => block()
if(a, block()) => block()

Fig. 15. Rewriting Rules in Finch

Background. Finch’s simplify pass plays a crucial role in
program optimization. It operates after each Looplet Pass,
simplifying the program through predefined rewriting rules
that account for mathematical properties. Examples of such
rules are illustrated in Figure 15. These rules extend beyond
basic optimizations like zero-annihilation and constant propa-
gation; some also impact control flow, such as for or if state-
ments. While the existing rules were initially designed for
the integer domain, they are equally applicable to continuous
loops. Utilizing Finch’s rewriting rules, we can leverage the
presence of annihilators (e.g., zero in multiplication) within
the continuous domain to enhance program efficiency.

Figure 16 offers an illustrative example. When computing
𝑠 =

∫ 𝑒𝑛

𝑠𝑡
𝑎𝑖 ∗ 𝑏𝑖 ∗ 𝑑𝑖 with a sequence of phases, the first phase

holds a value of zero. After lowering the Looplet following the "Sequence" and "Phase" compiler
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passes, the compiler generates four pairs of continuous loops, as shown in purple codes in Figure 16c.
Notably, the first three pairs involve multiplying with zero, leaving only the final pair with effective
computation. The simplify pass iteratively applies rewriting rules until the program converges,
as depicted in Figure 16d. Here, the simplify pass removes the first three pairs, exemplifying the
power of leveraging sparsity in continuous domain.
Additional Simplifications Required for Continuous Space. The fundamental challenge

behind lowering continuous loops is that it is impossible to execute an infinite number of state-
ments. However, because our tensors are piecewise constant, we can usually simplify the constant
regions. For example, repeatedly assigning the same value to a contiguous region of output can be
accomplished in one operation by setting that value along an interval. Repeated addition can be
accomplished in one operation using integration rules. We add rewrite rules to the simplification
pass to accomplish these tasks. However, this also introduces an essential consideration of reduc-
tion operator semantics. When the reduction operator is idempotent, like max=, the semantics are
clear. However, we must introduce two distinct reduction modes for the += operator within our
continuous tensor abstraction: summation (

∑
) and integral (

∫
) reductions.

Continuous summation (
∑
) shares a similar semantic with summation in traditional tensor pro-

gramming models. The summation mode operates exclusively on tensors with pinpoint coordinates,
aggregating values from each real (pinpoint) coordinate during the iteration. Consequently, when
the piece under consideration is not a pinpoint (i.e., it has a length greater than zero), summation re-
sults in an infinite value. In contrast, the integration (

∫
) mode is tailored for any piecewise-constant

tensor, allowing for integration across all values within a specified interval. It’s important to note
that applying integration mode to pinpoint tensors leads to a result of zero, as pinpoints inherently
possess a length of zero. In mathematics, particularly in measure theory, summation mode can be
thought of as an integral using the counting measure, while integration mode corresponds to an
integral using the Lebesgue measure [49].

From a syntactical perspective, our compiler distinguishes between integration and summation
reductions based on the presence or absence of d(i) within the expression, with 𝑖 serving as the
index of loop. The presence of d(i) indicates the use of an integral operator (e.g., s += A[i] *
d(i)), while its absence indicates the use of summation to pinpoints (e.g., s += A[i]).
In addition to the += operator, we have defined several other reduction operators, including

max=, min=, &=, and |= for continuous domain. These operators share a similar semantic with their
counterparts in traditional tensor programming models. Unlike +=, they have a consistent semantic
on both pinpoints and intervals. These operators concentrate only on the "value" of a piece, as their
semantics are independent of the piece’s length.

Continuous reduction is achieved through the addition of rewriting rules in the simplify pass, as
depicted in Figure 17b. When this rule detects a for loop, it substitutes all applicable assignments
into the collapsed expression, provided that the assignment is reducible with respect to the loop.
Figure 17a presents a list of collapsed expressions categorized by operators.
In integral mode, we utilize the drop_eps function on the Limit type to remove epsilon from

the length of the loop interval. In Figure 17a, drop_eps extracts the number(x.val) from Limit
type. This is done because integration with Lebesgue measure yields the same result regardless of
the inclusiveness of the interval (i.e.,

∫
[0,1] 𝑓 (𝑥)𝑑𝑥 =

∫
(0,1) 𝑓 (𝑥)𝑑𝑥). Figure 17b below provides an

example of how a continuous for loop, using integral mode, is reduced.
In summation mode, we emit an additional condition to check if the interval is pinpoint (i.e., the

length of the interval is zero). This ensures that summation only operates on pinpoint pieces.
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# Drop epsilon (e.g., 3+𝜖 => 3)
drop_eps(x::Limit) = x.val
drop_eps(x::Number) = x

# Integral mode
collapsed(idx, interval, lhs, +, rhs::∈(d(idx)))=
# e.g., 3*a[i]*d(i) => 3*a[i]
newrhs = remove d(idx) from rhs
newlen = drop_eps(length(interval))
return (+=)(lhs, (*)(newlen, newrhs))

# Summation mode
collapsed(idx, interval, lhs, +, rhs::∉(d(idx)))=
return if((==)(length(interval), 0),

(+=)(lhs, rhs))

# |=, &=, max=, min=
collapsed(idx, interval, lhs, |, rhs) =
return (|=)(lhs, rhs)

collapsed(idx, interval, lhs, &, rhs) =
return (&=)(lhs, rhs)

collapsed(idx, interval, lhs, max, rhs) =
return (max=)(lhs, rhs)

collapsed(idx, interval, lhs, min, rhs) =
return (min=)(lhs, rhs)

(a) Collapsing terms based on operator and context.

# Rewriting rule for continuous reduction
(@rule (for idx ∈ interval; body) => begin
# Every assignments in body
Rewrite(@rule ((op=)(lhs, rhs)) => begin
# If assignment is reducible
if (lhs is reducible &&

rhs is constant w.r.t loop)
# Collapse the loop to reduced expression
collapsed(idx, interval, lhs, op, rhs)

end
end)(body)

end)

# Example from Figure13-(d)
A2B2 = [st,en] ∩ [La,Ra] ∩ [Lb,Rb]
if A2B2.start <= A2B2.stop
for i = A2B2.start:A2B2.stop
s += Va * Vb * d(i)

↓↓↓↓↓↓↓↓↓↓↓↓↓

# After rewriting with reduction rule
A2B2 = [st,en] ∩ [La,Ra] ∩ [Lb,Rb]
if A2B2.start <= A2B2.stop
s += drop_eps(A2B2.stop - A2B2.start) * Va * Vb

(b) Continuous reduction rule and an example.

Fig. 17. Rewriting rule for continuous reduction. When the rule identifies that the assignment is reducible
with respect to a loop, it substitutes the loop into the collapsed expression.

1. (-∞ <= La-𝜖)
2. (La <= Ra)
3. (-∞ <= Lb-𝜖)
4. (Lb <= Rb)

(a) Relationships
collected from
Looplets in Fig-
ure 16a.

#A2B2 = [-∞,+∞] ∩ [La,Ra] ∩ [Lb,Rb]
A2B2.start = max(-∞, La, Lb) # Query1
A2B2.stop = min(+∞, Ra, Rb) # Query2
if A2B2.start <= A2B2.stop # Query3
len = drop_eps(A2B2.stop - A2B2.start)
s += len * Va * Vb

(b) Example code from Figure 17b with
iteration domain [-∞,+∞].

A2B2.start = max(La, Lb)
A2B2.stop = min(Ra, Rb)
len = drop_eps(A2B2.stop - A2B2.start)
s += len * Va * Vb

(c) Optimized code after asking three
queries: 1. max(-∞, La, Lb) == max(La,

Lb), 2. min(+∞, Ra, Rb) == min(Ra, Rb),
and 3. max(La, Lb) <= min(Ra, Rb).

Fig. 18. (a) Information gathered from Looplets. (b,c) Code optimization using bounds query testing with Z3.

7.3 Optimzation: Bound Analysis
Our code generation heavily relies on interval arithmetic, which involves tasks like computing
interval intersections or verifying if interval lengths are zero. To boost the efficiency of these
interval operations, we leverage compile-time information obtained from the relationships between
interval endpoints within nested Looplets. For instance, child Looplets of a Phase Looplet are always
bounded by the Phase’s range. In a Sequence Looplet, the child Looplet that precedes others also
precedes subsequent child Looplets in the sequence. Similarly, in a Stepper Looplet, the Stepper’s
body always precedes the next body of the Stepper. After gathering this information, we extended
Finch to use Z3 [21] to statically prove the validity of specific interval relationships.
This process is illustrated in Figure 18. In the example code before optimization, shown in

Figure 18b, we demonstrate how it can be simplified to the form in Figure 18c by testing bounds
queries using Z3. Initially, we collect information from nested Looplets (Figure 18a), resulting in
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four relationships derived from descriptions of Looplets of vector a and b. Subsequently, when
calculating the endpoints of intersection, we reduce the number of comparisons by formulating
two queries: (1) max(-∞, La, Lb) == max(La, Lb) and (2) min(+∞, Ra, Rb) == min(Ra,
Rb). Finally, we ask Z3 (3) max(La, Lb) <= min(Ra, Rb) to determine that A2B2.start <=
A2B2.stop is always true, enabling the compiler to eliminate the need for the if condition. This
approach streamlines our code and enhances the efficiency of interval arithmetic operations.

8 CASE STUDIES
In this section, we explore diverse applications under the continuous tensor abstraction across four
domains: (1) Geospatial search, (2) 3D point cloud convolution, (3) Interpolation in Neural Radiance
Field, and (4) Genomic interval operations in Bioinformatics. Our goal is to show the simplicity and
clarity with which these applications can be expressed in our abstraction, particularly compared to
challenges in existing tensor programming (Table 2). Additionally, we assess the performance of
the code generated by our compiler by comparing it with expertly hand-written libraries. Note that
our generated code may differ from its actual algorithm used in the baseline. We provide specific
details in each subsection. All experiments are conducted through single-threaded execution on a
Macbook Pro M2 Max with 32GB of memory.

Applications Baseline Ours LoC Saving
Radius Search Query 501 lines 5 lines 100×
Point Cloud Convolution 2,330 lines 16 lines 145×
Trilinear Interpolation in NeRF 82 lines 9 lines 9×
Genomic Interval Overlapping Query 206 lines 8 lines 26×

Table 2. Comparison of lines of code between the baseline and the program expressed in our abstraction.

8.1 Geospatial Search
The first application we have explored is the spatial search query on 2D points, a widely used
technique in applications such as geographical information systems (GIS) [15], computer-aided
design (CAD) [9], and spatial databases [27]. In our study, we focused on two commonly employed
queries: (1) the box search and (2) the radius search. In a box search, given a set of 2D points, this
query retrieves all points within a specified box. Conversely, a radius search retrieves all points
within a circle centered at (𝑂𝑥 , 𝑂𝑦) with a radius of 𝑅.

Figure 19 demonstrates how spatial search queries are represented in continuous tensor ab-
straction. We transform 2D points into a 3D continuous tensor, denoted as Points[x, y, id],
by assigning a unique ID to each point (𝑥,𝑦). This approach accommodates multiple points that
may share the same coordinates (𝑥,𝑦) depending on the dataset. Figure 19a illustrates a box query,
which outputs IDs of points intersecting with Box[x, y]. Figure 19b presents the box and radius
search query written in continuous tensor abstraction. In radius search query, it iterates through
all points within the radius 𝑅 (i.e., Points[Ox+r, Oy+s, id] where (𝑟 2 + 𝑠2) ≤ 𝑅2).

Figure 20 presents the performance of our generated code in comparison to Shapely [26], a Python
wrapper for GEOS [25], a well-known C++ library widely used in GIS for performing operations
on two-dimensional geometries. We employed a synthetic dataset that uniformly distributed 10
million points in the range [0,10000] × [0,10000]. In both experiments, we increased the size of the
query shape along the 𝑥-axis to augment the number of returned output points.

Figure 20a demonstrates that Shapely outperforms our generated code with a geomean of 4.7× on
the box search query. This is primarily attributed to Shapely’s utilization of an advanced spatial data
structure known as STRtree [37], which accelerates search operations. In contrast, our code does
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(a) Illustration of box search query described in continuous
tensor abstraction. Out[id] retrieves the IDs of points that
intersect with a specified box.

# Box Search Query
for x=-∞:∞ # continuous
for y=-∞:∞ # continuous
for id=1:N # discrete
Out[id] |= Box[x,y] && Points[x,y,id]

# Radius Search Query (Center=(Ox,Oy))
for r=-R:R # continuous
for s=-R:R # continuous
if (r*r + s*s <= R*R) #within radius R
for id=1:N # discrete
Out[id] |= Points[Ox+r,Oy+s,id]

(b) Box and Radius search query.

Fig. 19. Spatial SearchQueries in Continuous Tensor Abstraction. (a) Illustration of a box search query. 2D
points are represented as a 3D tensor Points[x,y,id], with each point assigned a unique ID. (b) Code for
box and radius search query, where the center of the circle is (𝑂𝑥 , 𝑂𝑦 ) and the radius is 𝑅.
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(a) Performance comparison of box search query with
increasing box size.
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(b) Performance comparison of radius search query
with increasing radius.

Fig. 20. Experimental result of spatial queries: lower values indicate better performance.

not employ any spatial data structure. However, Figure 20b reveals that our code surpasses Shapely
by 9.2× in terms of the geomean. This superiority arises from Shapely’s reliance on STRTree, which
operates solely on axis-aligned rectangle boxes. Shapely retrieves all the points within the bounding
box of a circle ([-𝑅,𝑅] × [-𝑅,𝑅]), and then linearly scan the retrieved points to check whether the
distance between each point and the center falls within the radius 𝑅. In contrast, our generated
code flexibly iterates within the circular region on the fly (Figure 19b), eliminating the inefficiency
of the two-step process in Shapely. Our implementation, accomplished in just 4-5 lines of code,
offers a considerable advantage compared to Shapely implementations, which involve 501 lines
of code for STR tree. Considerable potential exists for improving spatial query performance by
incorporating a 2D spatial structure into the continuous tensor abstraction.

8.2 3D Point Cloud Convolution
The second application we explored involves 3D point cloud convolution. A 3D point cloud com-
prises a set of XYZ coordinates in 3D space, representing a 3D shape or object. In 3D deep learning,
convolutional neural networks operate on point clouds rather than images, necessitating adapta-
tions to accommodate these points. Various works in this field exist, and we chose KPConv [56], a
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1 # Compute convolution only on designated pinpoints in Mask
2 for x=-∞:∞; for y=-∞:∞; for z=-∞:∞; # continuous
3 if Mask[x,y,z]
4

5 # Iterate Input points (x+r,y+s,z+t) within a ball centered at (x,y,z) with radius R
6 for r=-R:R; for s=-R:R; for t=-R:R; # continuous
7 if ((r*r+s*s+t*t) <= R*R)
8

9 # Iterate Kernel points (xk,yk,zk) within a ball centered at (r,s,t) with radius 𝜎

10 for xk=-∞:∞; for yk=-∞:∞; for zk=-∞:∞; # continuous
11 if ((xk-r)*(xk-r)+(yk-s)*(yk-s)+(zk-t)*(zk-t) <= Sigma*Sigma)
12

13 # Compute convolution with Input and Kernel features
14 intpl_weight = (1 - sqrt((xk-r)*(xk-r)+(yk-s)*(yk-s)+(zk-t)*(zk-t))/Sigma)
15 for m=0:Cout-1; for c=0:Cin-1 # discrete integer iteration
16 Out[x,y,z,m] += intpl_weight * Kernel[xk,yk,zk,m,c] * Input[x+r,y+s,z+t,c]

Fig. 21. KPConv on 3D point clouds written in continuous tensor abstraction.

representative example, to illustrate its implementation within our continuous tensor abstraction. In
this context, let 𝑝𝑖 ∈ R3 denote the coordinates from a point cloud (R𝑁×3), and 𝑓𝑖 ∈ R𝐶𝑖𝑛 represents
the corresponding features from 𝐹 ∈ R𝑁×𝐶𝑖𝑛 , where 𝑁 is the number of points in the point cloud.
The convolution of a point cloud 𝐼𝑛𝑝𝑢𝑡 by a filter 𝐾𝑒𝑟𝑛𝑒𝑙 at a point 𝑥 ∈ R3 is defined as follows:

(𝐼𝑛𝑝𝑢𝑡 ∗ 𝐾𝑒𝑟𝑛𝑒𝑙) (𝑥) =
∑︁

𝑝𝑖 ∈𝐵𝑥,𝑅

𝐾𝑒𝑟𝑛𝑒𝑙 (𝑝𝑖 − 𝑥) · 𝑓𝑖 (1)

Here, our neighborhoods are defined within a ball 𝐵𝑥,𝑅 = {𝑝𝑖 ∈ R3 |∥𝑝𝑖 − 𝑥 ∥ ≤ 𝑅} centered at 𝑥
with a radius of 𝑅. It aggregates all the neighbors’ feature 𝑓𝑖 within the ball using a weighted sum
based on the kernel weight. KPConv defines a continuous kernel 𝐾𝑒𝑟𝑛𝑒𝑙 (𝑝𝑖 −𝑥) using interpolation
with predefined points 𝑝𝑘 ∈ R3 from kernel points 𝑃 ∈ R𝑀×3, where 𝑀 is the number of kernel
points, and𝑊𝑘 ∈ R𝐶𝑖𝑛×𝐶𝑜𝑢𝑡 represents their corresponding features.

(𝐼𝑛𝑝𝑢𝑡 ∗ 𝐾𝑒𝑟𝑛𝑒𝑙) (𝑥) =
∑︁

𝑝𝑖 ∈𝐵𝑥,𝑅

©«
∑︁

�̃�𝑘 ∈𝐵 (𝑝𝑖−𝑥 ),𝜎

(
1 − ∥(𝑝𝑖 − 𝑥) − 𝑝𝑘 ∥

𝜎

)
·𝑊𝑘

ª®¬ · 𝑓𝑖 (2)

KPConv selectively interpolates with kernel points 𝑝𝑘 within a ball 𝐵 (𝑝𝑖−𝑥 ),𝜎 centered at (𝑝𝑖 −𝑥),
the position of input point neighbors centered on 𝑥 , with a radius of 𝜎 . It then employs linear
correlation as an interpolation weight, denoted as

(
1 − ∥ (𝑝𝑖−𝑥 )−�̃�𝑘 ∥

𝜎

)
.

Figure 21 provides an implementation of KPConv described within the continuous tensor ab-
straction. The Input is a 4-dimensional tensor, with the first three dimensions containing the
positions of points 𝑝𝑖 , and the fourth dimension corresponding to the features 𝑓𝑖 ∈ R𝐶𝑖𝑛 . Similarly,
the 5-dimensional continuous tensor Kernel includes three dimensions for the positions of kernel
points 𝑝𝑘 and the remaining two dimensions for features𝑊𝑘 ∈ R𝐶𝑖𝑛×𝐶𝑜𝑢𝑡 .

Lines 2-3 iterate solely over a region of interest, encompassing the pinpoints in Mask for which
convolution is desired. Lines 6-7 and Lines 10-11 involve the iteration over input points and kernel
points within the neighborhoods 𝐵𝑥,𝑅 and 𝐵 (𝑝𝑖−𝑥 ),𝜎 , respectively. Finally, Lines 14-16 perform the
convolution between input and kernel features with interpolation weights. In Line 15 (c and m), both
input and kernel features are iterated discretely, like in the traditional dense tensor programming
model. With our continuous tensor abstraction, KPConv is succinctly and clearly described in 16
lines of code, while PyTorch requires 2,330 lines of code, including the ball query search library [12].
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(a) Performance comparison of convolutional
layers in the network.
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Fig. 22. Experimental results of 3D point cloud convolution: (a) Lower is better, (b) Higher is better.

Figure 22 presents the experimental results comparing our generated code with the PyTorch
implementation of KPConv. In Figure 22a, the elapsed time of each KPConv layer in the 3D shape
classification model architecture using the ModelNet40 [58] dataset is shown. In the initial layers
(layers 1-6), our code either outperforms or matches the performance of the PyTorch implemen-
tation. However, starting from layer 7, the PyTorch implementation outperforms our generated
code. In contrast to our code in Figure 21, where we perform (1) ball query searches (Lines 6-11)
and (2) dense feature multiplication on the fly (Lines 14-16) within a single nested for loop, the
PyTorch implementation separates these two components. It first creates a large dense tensor, which
comprises all the neighbor features collected through a ball search query library, and subsequently
applies well-optimized dense BLAS routines to this large dense tensor.
Figure 22b further confirms the difference by demonstrating the speedup over PyTorch with

increasing channel size. The initial layers have small channel sizes (
√
𝐶𝑖𝑛 ·𝐶𝑜𝑢𝑡 ) ≤ 32), but the later

layers have larger channels that emphasize dense computation. As a result, our generated code
performs better in the first half of the layers, where the ball query plays a dominant role in the
overall computation. In contrast, the PyTorch implementation excels in the latter half, where dense
computation is the dominant component.

8.3 Trilinear Interpolation in Neural Radiance Field
The third application we’ve explored is a Neural Radiance Field (NeRF) [42] in 3D deep learning.

NeRF is a widely used machine learning model in computer graphics and computer vision, creating
detailed 3D reconstructions from 2D images. Many NeRF models [24, 39, 55] utilize trilinear
interpolation on 3D sparse voxel grids to efficiently represent the 3D scene. In the context of NeRF,
generating a 2D image from a new viewpoint involves creating rays, sampling points along each ray,
performing trilinear interpolation on the sparse voxel grid for each sampled point, and combining
the outcomes to calculate the final RGB color using the volume rendering. Our specific focus in
this context is on trilinear interpolation during the ray sampling phase within Plenoxel [24].
While the actual computations take place in 3D, we illustrate a 2D bilinear interpolation for

explanatory purposes in Figure 23a. It highlights how the interpolated value at the desired point
(depicted in black) is equal to the sum of the products of the values at each corner point and
the corresponding partial areas diagonally opposite the corners (indicated by different colors). In
Figure 23b, we represent this concept in continuous tensor abstraction by expanding each corner
point and the desired point (𝑥,𝑦) into squares. We then compute the interpolation by calculating
intersected area using integral reduction as

∫ 1
0

∫ 1
0 𝐺𝑟𝑖𝑑𝑥+𝑖,𝑦+𝑗 ·𝑑𝑖 ·𝑑 𝑗 . This interpolation is performed

on the sparse 2D grid at every sampled point along the ray.
Figure 23c demonstrates the continuous tensor implementation of 3D trilinear interpolation

at sampled points along the ray. In Lines 1-4, it samples a series of points by incrementing the
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(b) Bilinear interpolation at sampled points along the ray
on a 2D sparse grid.

1 for t=0:T-1 # sampling on discrete timestep
2 x = Ox + Dx*t # O : ray origin, D : ray direction
3 y = Oy + Dy*t
4 z = Oz + Dz*t
5 for i=0.0:1.0 # continuous
6 for j=0.0:1.0 # continuous
7 for k=0.0:1.0 # continuous
8 for c=0:27 # interpolating 28 discrete features
9 Out[t,c] += Grid[x+i,y+j,z+k,c]*d(i)*d(j)*d(k)

(c) Trilinear interpolation of sampled ray point in a 3D
sparse voxel grid written in our abstraction.
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(d) Performance comparison of different 3D
objects in NeRF Synthetic dataset [42].

Fig. 23. Illustration of (a,b) bilinear interpolation and (c) trilinear interpolation during ray sampling in sparse
voxel grids. Note that (a) and (b) are for visualization purposes, while (c) the actual computations occur in 3D.

integer time step regularly along the ray. Lines 5-9 subsequently perform trilinear interpolation
at each of these points using integral reduction. It’s important to note that in the actual Plenoxel
model, the implementation interpolates a 28-dimensional feature vector, with Line 8 reflecting this.
Our implementation is remarkably simple and intuitive, providing a clear understanding of the
program’s behavior in 3D continuous space. It requires only 9 lines of code, while the PyTorch
implementation involves 82 lines of code within traditional tensor programming model.
Figure 23d presents a performance comparison between our generated code and a PyTorch

implementation for trilinear interpolation of Plenoxel.We conducted this evaluationwhile rendering
a 256×256 image using the NeRF Synthetic dataset [42]. Our generated code surpasses the baseline
implementation by a factor of 1.3× to 2.0×. This improvement can be primarily attributed to our
efficient utilization of voxel grid sparsity, as we only store non-zero voxels and avoid unnecessary
computations. In contrast, the PyTorch implementation employs a fully dense voxel grid, storing
even empty voxels, and performing computations regardless of voxel occupancy.

8.4 Genomic Interval Operations
The last application we’ve explored is genomic interval operations using our continuous ab-

straction. In Bioinformatics, performing operations on genomic sequences and applying boolean
operations to genomic interval data can be computationally intensive [47]. Figure 24 illustrates
genomic interval operations presented within the continuous tensor abstraction.

In Figure 24a, genomic interval data is depicted in a 3D continuous tensor, denoted as the interval
database Data[chr, jd, x] and query intervals Query[chr, id, x]. Each chromosome (chr)
contains a 2D subtensor (e.g., Data[chr, :, :]), with multiple intervals across a continuous
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ing to accelerate intersec-
tion tests by filtering out
unnecessary data points.

# Naive description of Intersect query
for chr=1:23 # discrete
for id=1:N # discrete
for jd=1:M # discrete
for x=-∞:+∞ # continuous
Intersect[chr,id,jd,x] |= Query[chr,id,x] && Data[chr,jd,x]

# Naive description of Overlap query
for chr=1:23 # discrete
for id=1:N # discrete
for jd=1:M # discrete
for x=-∞:+∞ # continuous
Overlap[chr,id] |= Query[chr,id,x] && Data[chr,jd,x]

# Naive description of Join query
for chr=1:23 # discrete
for id=1:N # discrete
for jd=1:M # discrete
for x=-∞:+∞ # continuous
Join[chr,id,jd] |= Query[chr,id,x] && Data[chr,jd,x]

# Naive description of Count query
for chr=1:23 # discrete
for id=1:N # discrete
for jd=1:M # discrete
for x=-∞:+∞ # continuous
if (Query[chr,id,x] && Data[chr,jd,x])
Count[chr,id] += 1

# Accelerating Overlap query with Grid
for chr=1:23 # discrete
for id=1:N # discrete
for x1=-∞:+∞ # continuous
for jd=1:M # discrete
if (Query[chr,id,x1] && Grid[chr,x1,jd]) # Filtering with Grids
for x=-∞:+∞ # continuous
Overlap[chr,id] |= Query[chr,id,x] && Data[chr,jd,x]

(b) Continuous loops for four distinct genomic operations: Intersect, Overlap,
Join, and Count. The code above demonstrates the naive version, while the code
below illustrates the Overlap query using grid partitioning.

Fig. 24. Genomic interval operations in continuous tensor abstraction. (a) Genomic data is represented as 3D
continuous tensor where white regions indicate ’false’ boolean values. Below is a table that represents a 1D
grid index of Data[chr, jd, x] partitioned by half.

domain (x), each identified by a unique interval ID (jd). The chr and jd dimensions represent
pinpoint coordinates, while the x dimension signifies interval coordinates.
Figure 24b (top) illustrates four distinct genomic operations within our continuous tensor ab-

straction. For example, Count[chr, id] counts the number of intervals in Data intersecting with
a query interval (Query[chr, id, :]). These programs are expressed clearly and succinctly in
the continuous tensor abstraction. However, the naive version involves pairwise comparisons
(𝑁 ×𝑀) between all query intervals (id) and data intervals (jd) within each chromosome, incurring
substantial computational costs when handling numerous intervals per chromosome.

Thus, in practice, previous studies [3, 22, 23, 38, 47] have used an interval data structure to skip
unnecessary comparisons. We demonstrated a 1D grid [23] using our abstraction to partition the
continuous domain along dimension x into exclusive partitions, encompassing the entire dimension
𝑥 . The 1D grid index, represented in a 3D continuous tensor as Grid[chr, x, jd], is illustrated in
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(a) Sensitivity test regarding the count of successful
intersections in a synthetic dataset.
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(b) Performance comparison using realistic dataset.

Fig. 25. Experimental result of genomic interval operations: lower values indicate better performance.
Finch(ours) uses 1D-grid partitioning data structure.

Figure 24a (bottom table). It divides the x domain into two halves: [0,4) and [4,8), with interval IDs
(jd) allocated to the respective partitions.

Figure 24b (bottom) depicts the Overlap query using this 1D grid index within our abstraction.
The grid filters out unnecessary intervals in Data, avoiding pairwise comparisons. For instance,
consider a query interval Query[1,2,:] spanning [4,7]. It intersects only with Data[1,3,:] and
Data[1,4,:]. As this query interval [4,7] exclusively intersects with the right half ([4,8)) of the
Grid, computations are only processed for jd=3, 4.

Figure 25 presents a performance comparison between our generated code using grid partitioning
and three baseline implementations: Pybedtools [20], Bioframe [44], and Pyranges [52]. Pybedtools
is a Python wrapper of Bedtools [47], a C library which utilizes a hierarchical binning data structure
internally, Bioframe leverages the Pandas [40] framework for genomic interval operations, and
Pyranges employs a Nested Containment List [3], a variation of the segment tree written in C.
Index building time was not measured in these experiments.

In Figure 25a, a sensitivity test examines the number of successful intersections using a synthetic
dataset. The intervals are uniformly distributed, maintaining a total of 100,000 intervals in both
Data and Query. As the x-axis increases, the length of intervals in both Data and Query is extended
to increase the number of intersections between intervals. Figure 25b presents a performance com-
parison on a realistic dataset [38], with Data containing 8,942,869 intervals and Query containing
1,193,657 intervals. Our generated code demonstrates superior or comparable performance in both
synthetic and realistic datasets, with the advantage of being implemented in just 8 lines of code,
while Bedtools implementation require 206 lines of code.

9 RELATEDWORKS
Dense tensor programming models. Tensor programming, rooted in Fortran’s array data struc-
ture [6], has provided a foundation for diverse applications. Numerous compiler works aim to
improve code generation for such tensor-based programs. Techniques like loop vectorization [17, 36]
and parallelization [19] enhance tensor access optimization and hardware resource utilization.
The polyhedral compilation model [7, 13], based on integer linear programming (ILP), optimizes
programs by treating nested loop iterations as lattice points within polyhedra and applying affine
loop transformations like tiling or skewing.
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In recent years, the machine learning community has introduced frameworks like TensorFlow [1],
Jax [14], and PyTorch [45], inspired by tensor-focused languages like Matlab [32] and NumPy [28].
These frameworks are instrumental in developing machine learning models, which heavily rely on
tensor operations. The latest advancements in scheduling languages [16, 48] have played a pivotal
role in enhancing the performance of tensor-based programs. They separate tensor programs
into what to compute (algorithm) and how to compute (schedule), simplifying the creation of
high-performance tensor programs and the exploration of various loop transformations.

Sparse tensor programmingmodels.Many of our designs take inspiration from existing sparse
tensor programming models. Sparse tensors, unlike their dense counterparts, provide multiple
storage format options. The level format abstraction, originally introduced in TACO [18, 34],
explains the diversity of existing sparse formats by introducing the concepts of a coordinate
hierarchy and level format. This abstraction has further evolved into the fibertree abstraction [54],
which serves as a foundational format abstraction for our continuous tensors.

Sparse tensor programming often entails complex code to co-iterate over multiple sparse tensors,
each stored in a different format. Numerous compiler projects have dedicated their efforts to
generating efficient code for accommodating these diverse formats. Projects like Taichi [31], MLIR
sparse dialect [11], TACO [34], SparseTIR [59], and Finch [2] can generate efficient code from
sparsity-agnostic definitions of computation. The TACO project [18, 30, 34, 51] introduces the
"merge lattice" concept to efficiently generate code for sparse tensor algebras, even when the tensors
are stored in different sparse formats. In a recent development, the Finch project [2] introduces
the innovative concept of "Looplets," simplifying the generation of sparse code on integer domain
through the use of rewriting rules and enhancing extensibility. Looplets support various element
types, not limited to numeric types, and a wide range of operators, expanding their versatility.

Continuous programmingmodels. Several tools, such as Chebfun [8] and Sympy [41], offer an
intuitive way to manipulate continuous functions in numerical computing. They enable operations
like differentiation, integration, and root-finding for functions defined over specific intervals. In
addition to working with piecewise constant functions, they offer the capability to handle a wider
range of function types beyond constant functions by leveraging a symbolic computation engine.
However, their primary focus is not on performance or the tensor programming model with loops.
Chebfun focuses on Chebyshev polynomials, a computation class commonly used in numerical
computing, which is entirely different from our focus. While Chebfun supports 1D piecewise
functions, it is limited to 2D and 3D support [29, 57] and lacks general N-D piecewise capabilities.
Both Sympy and Chebfun do not account for sparsity or interval intersections, resulting in the need
to compare all pairs of pieces. However, our framework allows the creation of more efficient code
that operates only on intersecting pieces, eliminating the need to compare all pairs of intervals.

10 CONCLUSION
In this paper, we’ve introduced the continuous tensor abstraction, extending the domain of indices
to real numbers. Our approach is grounded in piecewise-constant tensors, offering a unique
format abstraction for storing these tensors and a code generation technique to produce efficient
code from continuous loops. This novel abstraction enables the creation of diverse applications,
spanning genomic interval operations, spatial searches, point cloud convolution, and trilinear
interpolation on sparse voxel grids. It introduces a fresh perspective to loop-level reasoning for
these applications, which has remained largely unexplored within traditional tensor programming
models. The resulting compiler efficiently generates code, achieving competitive performance levels
with leading libraries in some domains on the CPU, all while requiring significantly less code. We
believe that this paper marks the onset of a new era in tensor programming paradigms, opening up
exciting possibilities for the future.
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